Fabrication of Highly Ordered Two-Dimensional Graphene Arrays on Patterned Substrate

2014 ◽  
Vol 809-810 ◽  
pp. 231-236
Author(s):  
Meng Jie Chang ◽  
Jun Liu ◽  
Ying Li

We report a facial and straightforward method to fabricate highly ordered two-dimensional graphene arrays. A monolayer molecule pattern with alternative hydrophilic/hydrophobic wetting property was first formed by using micro-contact printing (μCP) and self-assembly techniques. Water droplets were condensed on the hydrophilic areas under saturated water atmosphere, which could be used to construct the ordered graphene arrays. The optical microscopy and atom force microscopy results indicate that ring and porous arrays of graphene can be obtained with low and high concentration of graphene solutions, respectively. Without the water droplet template, graphene patterns with square structure were produced.

2012 ◽  
Vol 554-556 ◽  
pp. 39-42
Author(s):  
Chun Hua Liu ◽  
Yun Zhi Xie ◽  
Yong Dong Li ◽  
Xun Li ◽  
Yi Bao Li ◽  
...  

The compound of perylene-3,4,9,10-tetracarboxylic acid (PTCA) has been synthesized and characterized. By varying the concentration, it can be used to modulate the supramolecular self-assembly morphologies. Atom force microscopy (AFM) images show that the nano-layer structure will be obtained in relatively high concentration. This structure mainly depends on the intermolecular hydrogen-bonding and π–π stacking interactions.


2012 ◽  
Vol 3 ◽  
pp. 114-122 ◽  
Author(s):  
ChaMarra K Saner ◽  
Kathie L Lusker ◽  
Zorabel M LeJeune ◽  
Wilson K Serem ◽  
Jayne C Garno

Particle lithography offers generic capabilities for the high-throughput fabrication of nanopatterns from organosilane self-assembled monolayers, which offers the opportunity to study surface-based chemical reactions at the molecular level. Nanopatterns of octadecyltrichlorosilane (OTS) were prepared on surfaces of Si(111) using designed protocols of particle lithography combined with either vapor deposition, immersion, or contact printing. Changing the physical approaches for applying molecules to masked surfaces produced OTS nanostructures with different shapes and heights. Ring nanostructures, nanodots and uncovered pores of OTS were prepared using three protocols, with OTS surface coverage ranging from 10% to 85%. Thickness measurements from AFM cursor profiles were used to evaluate the orientation and density of the OTS nanostructures. Differences in the thickness and morphology of the OTS nanostructures are disclosed based on atomic force microscopy (AFM) images. Images of OTS nanostructures prepared on Si(111) that were generated by the different approaches provide insight into the self-assembly mechanism of OTS, and particularly into the role of water and solvents in hydrolysis and silanation.


2014 ◽  
Vol 13 (3) ◽  
pp. 264-270 ◽  
Author(s):  
Shinichiro Ido ◽  
Hirokazu Kimiya ◽  
Kei Kobayashi ◽  
Hiroaki Kominami ◽  
Kazumi Matsushige ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 29378-29384 ◽  
Author(s):  
Hiroaki Kominami ◽  
Kei Kobayashi ◽  
Shinichiro Ido ◽  
Hirokazu Kimiya ◽  
Hirofumi Yamada

We investigated self-assembly such as hexamerization and two-dimensional crystallization of immunoglobulin G (IgG) molecules on mica by atomic force microscopy. We also estimated the association rate constant of the self-assembled IgG antibodies.


2008 ◽  
Vol 8 (3) ◽  
pp. 1473-1480 ◽  
Author(s):  
M. V. Karachevtsev ◽  
O. S. Lytvyn ◽  
S. G. Stepanian ◽  
V. S. Leontiev ◽  
L. Adamowicz ◽  
...  

Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.


2019 ◽  
Author(s):  
Kevin N. Baumann ◽  
Luca Piantanida ◽  
Javier García-Nafría ◽  
Diana Sobota ◽  
Kislon Voïtchovsky ◽  
...  

The self-assembly of the protein clathrin on biological membranes facilitates essential processes of endocytosis in biological systems and has provided a source of inspiration for materials design by the highly ordered structural appearance. By mimicking the architecture of clathrin self-assemblies to coat liposomes with biomaterials, new classes of hybrid carriers can be derived. Here we present a method for fabricating DNA-coated liposomes by hydrophobically anchoring and subsequently growing a DNA network on the liposome surface which structurally mimics clathrin assemblies. Dynamic light scattering (DLS), ζ-potential and cryo-electron microscopy (cryo-EM) measurements independently demonstrate successful DNA coating. Nanomechanical measurements conducted with atomic force microscopy (AFM) show that the DNA coating enhances the mechanical stability of the liposomes relative to uncoated ones. Furthermore, we provide the possibility to reverse the coating process by triggering the disassembly of the DNA coating through a toehold-mediated displacement reaction. Our results describe a straightforward, versatile, and reversible approach for coating and stabilizing lipid vesicles by an interlaced DNA network. This method has potential for further development towards the ordered arrangement of tailored functionalities on the surfaces of liposomes and for applications as hybrid nanocarrier.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


Sign in / Sign up

Export Citation Format

Share Document