Influence of FRP Waste on the Properties of Unsaturated Polyester Resin Based Artificial Marble

2014 ◽  
Vol 809-810 ◽  
pp. 264-266 ◽  
Author(s):  
Ning Liu ◽  
Fang Gang Liu ◽  
Guang Jin Li ◽  
Man Zhang ◽  
He Yi Ge ◽  
...  

There is a lot of glass fiber reinforced plastic (FRP) waste every year. Its low utilization rate and serious secondary pollution cause many problems. In this paper, FRP waste was added to enhance unsaturated polyester resin based artificial marble. The effects of FRP waste content and its particle size on the mechanical properties of artificial marble were discussed. Results show that the FRP waste content and its particle size are closely related to the mechanical properties of artificial marble. The artificial marble with FRP waste particle size of less than 0.075 mm and content of 12.5 wt % got the best mechanical properties, whose flexural strength was 23.72 MPa and compressive strength was 79.13 MPa, increased by 75.8 % and 128.1 %, respectively, compared with the strength of artificial marble with no FRP waste.

2001 ◽  
Vol 17 (4) ◽  
pp. 205-224 ◽  
Author(s):  
A. Benny Cherian ◽  
Eby Thomas Thachil

Unsaturated polyester resins are extensively used in the fibre-reinforced plastic industry. The fracture toughness and impact resistance of rigid unsaturated polyester can be improved by the incorporation of elastomers by physical and chemical methods. In the physical method, two strategies are adopted. In the first, various masticated elastomers are dissolved in styrene and blended with unsaturated polyester resin. In this study, the mechanical properties of cured blends are compared with the unmodified resin and the performance of nitrile rubber is found to be far superior to all other rubbers considered. In the second approach, elastomers are modified by grafting with maleic anhydride. These maleated elastomers are then dissolved in styrene and blended with polyester resin. Maleic anhydride modified elastomers are found to improve the mechanical properties such as toughness, impact resistance and tensile strength of the cured resin to a greater extent compared to unmodified elastomers.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540003 ◽  
Author(s):  
Yun-Hae Kim ◽  
Soo-Jeong Park ◽  
Jin-Woo Lee ◽  
Kyung-Man Moon

Halloysite nanotube, which has been used in the polymer, has been spotlighted as a useful functional materials in the improvement of mechanical properties. In the current study, we established the optimal nanoparticle dispersion and analyzed the mechanical characteristics and the behavior of composites reinforced by HNTs have been synthesized by dispersing HNTs to the unsaturated polyester resin (UPR) and their mechanical characteristics, especially the tensile strength, interlaminar shear strength have been analyzed. Additionally, the reinforcement effect and its variation according to the amount of HNTs was also studied.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.


2021 ◽  
pp. 51305
Author(s):  
Nora Abigail Wilson García ◽  
Jorge Luis Almaral Sánchez ◽  
Ramón Álvaro Vargas Ortiz ◽  
Abel Hurtado Macías ◽  
Nelly Flores Ramírez ◽  
...  

2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


Sign in / Sign up

Export Citation Format

Share Document