Analysis of Thrust Force and Torque in Drilling Process of Particle Board

2015 ◽  
Vol 818 ◽  
pp. 233-238
Author(s):  
Krzysztof Szwajka

Particleboard is a wood based composite extensively used in wood working. Drilling is the most commonly used machining process in furniture industries. The surface characteristics and the damage free drilling are significantly influenced by the machining parameters. The thrust force developed during drilling play a major role in gaining the surface quality and minimizing the delamination tendency. In this study trials were made eighteen durability tools for different values of the parameters analyzed cut. Based on the results obtained from the study, the effect of cutting parameters selected signals of axial force and torque cutting. Proposed mathematical models using ANOVA, allowing to estimate the cutting forces.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2015 ◽  
Vol 818 ◽  
pp. 243-247 ◽  
Author(s):  
Krzysztof Szwajka

Drilling is the most commonly used machining process in furniture industries. In this study the eighteen tests of tool durability for different values of the analyzed cutting parameters were carried out. Based on the results of investigations, the influence of selected parameters on the cutting surface quality was determined. Mathematical models based on analysis of variance (ANOVA), allowing to estimate the surface quality in the cutting process were proposed.


Author(s):  
S. Chandrabakty ◽  
I. Renreng ◽  
Z. Djafar ◽  
H. Arsyad

One of the machining failures in composite materials is delamination damage. In this paper, machining parameters and delamination damage caused by the drilling process on ramie woven reinforced composite material with an unsaturated polyester matrix were investigated. The ramie woven used is ramie yarn type 12S/3. The machining process used 1.5 kW Pillar drills, where variations in the diameter of the "brad & spur" drill are 4 mm, 6 mm, 8 mm, and 10 mm, respectively. In this work, focuses on the influence of machining parameters like feeds rate and spindle speed. Holes quality was analyzed in terms of thrust force and delamination failure. From the results of this study, the thrust force value obtained at the time of drilling is very closely related to the delamination damage that happens. Delamination damage occurs on both sides of the holes drill.


2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


Author(s):  
Vahid Pourmostaghimi ◽  
Mohammad Zadshakoyan

Determination of optimum cutting parameters is one of the most essential tasks in process planning of metal parts. However, to achieve the optimal machining performance, the cutting parameters have to be regulated in real time. Therefore, utilizing an intelligent-based control system, which can adjust the machining parameters in accordance with optimal criteria, is inevitable. This article presents an intelligent adaptive control with optimization methodology to optimize material removal rate and machining cost subjected to surface quality constraint in finish turning of hardened AISI D2 considering the real condition of the cutting tool. Wavelet packet transform of cutting tool vibration signals is applied to estimate tool wear. Artificial intelligence techniques (artificial neural networks, genetic programming and particle swarm optimization) are used for modeling of surface roughness and tool wear and optimization of machining process during hard turning. Confirmatory experiments indicated that the efficiency of the proposed adaptive control with optimization methodology is 25.6% higher compared to the traditional computer numerical control turning systems.


2020 ◽  
pp. 002199832095774
Author(s):  
Eduardo Pires Bonhin ◽  
Sarah David-Müzel ◽  
Manoel Cléber de Sampaio Alves ◽  
Edson Cocchieri Botelho ◽  
Marcos Valério Ribeiro

The use of fiber metal laminates (FML) in aeronautics components has been increased in the last years, mainly due to the gain in mechanical properties combined with low specific mass. However, in the assembly of these materials on the structures to which they will be attached, mechanical screwing is still the main method used, which requires the performance of drilling processes. Something it is very complicated for these materials and can cause damage that compromises the performance. Therefore, this work aims to approach and summarize the evolution of the mechanical drilling process on FML developed in the last years. By the work, the main problems that occur during the drilling of these materials are punctually approached, such as delamination, burr formation, dimensional error, poor roughness, and tool wear. In addition, it is presented how these problems are affected by the machining parameters (cutting parameters, geometry, material/coating tool, and cutting environment), as well as suggestions for minimizing process problems. Thus, the article intends to provide as much information as possible available in the literature, seeking to help researchers gain a comprehensive view of the mechanical drilling of fiber metal laminates.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 387-390
Author(s):  
Obrad Anicic ◽  
Srdjan Jovic ◽  
Ivica Camagic ◽  
Mladen Radojkovic ◽  
Nenad Stanojevic

Purpose The main aim of the study was to measure the cutting forces and chip shapes based on different machining parameters. Design/methodology/approach To get the best optimal machining conditions, it is essential to use the best combination of machining parameters. Although some machining parameters are not important for the process, there are machining parameters which are very important for the machining process. Findings It is essential to determine which machining parameters are the most dominant to make the optimal machining conditions. Originality/value Six different chip shapes are obtained according to ISO standardization. It was determined that the different cutting forces occurred for the different chip shapes.


Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta

Abstract Tungsten heavy alloys (WHAs) are ideally suited to a wide range of density applications such as counterweights, inertial masses, radiation shielding, sporting goods and ordnance products. Manufacturing of these components essentially require machining to achieve desired finish, dimensions and tolerances However, machining of WHAs are extremely challenging because of higher values of elastic stiffness and hardness. Hence, there is a need to find the right combination of cutting parameters to carry out the machining operations efficiently. In the present work, turning tests are conducted on three different grades of WHAs, namely, 90WHA, 95WHA and 97WHA. Taguchi analysis is carried out to find out the most contributing factor as well as optimum cutting parameters that can give higher metal removal rate (MRR), lower surface roughness and lower cutting forces. It is observed that feed rate is the most prominent factor with percentage contribution varying in the range of 46–61%; whereas cutting speed has least effect on cutting forces, especially for 95WHA and 97WHA. Optimum values of forces, surface roughness and MRR and the corresponding machining parameters to be taken are presented. It is observed that 95W WHA has slightly better machinability as compared to other two grades since it gives highest MRR with lowest cutting forces and surface roughness values. The optimum machining parameter settings, so predicted, can be utilized to machine WHAs efficiently for manufacture of counter weights and inertial masses used in aerospace applications.


2018 ◽  
Vol 178 ◽  
pp. 01008
Author(s):  
Panagiotis Kyratsis ◽  
Nikolaos Efkolidis ◽  
Daniel Ghiculescu ◽  
Konstantinos Kakoulis

This study investigates the thrust force (Fz) and torque (Mz) in a drilling process of an Al7075 workpiece using solid carbide tools (Kennametal KC7325), depending on the effects of crucial cutting parameters such as cutting velocity, feed rate and tool diameter of 10mm, 12mm and 14mm. Artificial neural networks (ANN) methodology is used in order to acquire mathematical models for both the thrust force (Fz) and torque (Mz) related to the drilling process. The ANN results showed that the best prediction topology of the network for the thrust force was the one with five neurons in the hidden layer, while for the case of Mz the best network topology for the prediction of the experimental values was the one with six neurons in the hidden layer. Based on the results acquired, the ANN models achieved accuracy of 1,96% and 1,95% for both the thrust force and torque measured, while the R coefficient for the prediction model of the thrust force is 0.99976 and 00.99981 for the torque. As a result they can be considered as very accurate and appropriate for their prediction.


Sign in / Sign up

Export Citation Format

Share Document