Magnetic Composite Fe3O4/CuO/TiO2 Nanoparticles: Preparation, Characterization and Photocatalytic Activity

2015 ◽  
Vol 827 ◽  
pp. 13-18 ◽  
Author(s):  
Shofianina Jalaludin ◽  
Sarah A. Arifin ◽  
Rosari Saleh

Magnetic composite Fe3O4/TiO2/CuO nanoparticles have been synthesized by sol-gel method at low temperature. The resultant composite nanoparticles coupled with different Cu contained by adjusting the molar ratio of CuO to (Fe3O4/TiO2) from 1:1 – 5:1. The structure, morphology and properties of nanoparticles were characterized using XRD, EDX, FESEM and VSM. The results showed that all composite nanoparticles consist of cubic spinel Fe3O4, anatase TiO2 and monoclinic CuO, have ferromagnetic properties. The photocatalytic performance was evaluated using methylene blue in aqueous solutions under UV and visible light irradiation. Among the composite Fe3O4/TiO2/CuO nanoparticles, the sample with the molar ratio of CuO to (Fe3O4/TiO2) = 5 : 1 exhibited the highest photocatalytic efficiency. Photocatalytic mechanism was investigated by measuring the photocatalytic degradation rate in the presence of scavenger. The results suggested that holes play the most important role in degradation of methylene blue.

2014 ◽  
Vol 875-877 ◽  
pp. 251-256 ◽  
Author(s):  
Lin Sun ◽  
Rong Shao ◽  
Lan Qin Tang ◽  
Zhi Dong Chen

Ag/ZnO nanocomposite photocatalysts with high photocatalytic performance were successfully synthesized via a facile sol-gel method. The prepared Ag/ZnO products were characterized by XRD, SEM, EDS, FT-IR, BET surface area, TG and DSC. Photodegradation experiments of the samples were carried out by choosing Methylene Blue (MB) as a model target under UV irradiation with homemade photocatalytic apparatus. Among these products, when the molar ratio of Ag to ZnO was fixed at 0.07 and the calcination temperature was around 450 °C, the obtained samples exhibited the highest photocatalytic activity.


2012 ◽  
Vol 457-458 ◽  
pp. 1035-1038 ◽  
Author(s):  
Gui Hua Li ◽  
An Feng Wang

In this present work, N-Ce co-doped TiO2 nanopaticles were prepared via sol-gel process and characterized by TG - DTA and XRD. Their performance of photocatalytic degradation of methylene blue under visible light were investigated. N-Ce co-doped TiO2 appeared to be somewhat more efficient than the starting TiO2. The effects of catalyst compsition, catalyst amount, reaction temperature and solution pH on their photocatalytic activity towards methylene blue were studied and discussed. Experiment results depicted that activeness of catalyst N0.4Ce0.06/TiO2 was highest. Using this catalyst, when the catalyst amount was 0.3 g/L,the reaction temperature was 40 °C and pH of the solution was 9.0 the degradation rate of mehylene blue in 4h could reach 94.00%.


2011 ◽  
Vol 399-401 ◽  
pp. 722-726 ◽  
Author(s):  
Jiang Ping Zhao ◽  
Xiao Ni Yang ◽  
Hao Zhang

In this paper, Cu-Ce/TiO2nano-particles, whose molar ratio account for 2%,2.5%,3%,3.5% and 4% respectively, were synthesized by sol-gel method, using Ti(C4H9O)4as the raw material, And the photocatalytic activities of the prepared samples were investigated by degrading formaldehyde gas under pure visible light through simulating indoor environment in the environmental test chamber. Moreover, X-Ray Powder Diffraction (XRD) and Ultraviolet-visible spectrophotometer were applied to analyze the crystallite size and optical properties of the samples. It is indicated that the sample of 2.5% performs best in the test. Besides, photocatalytic mechanism of co-doping of Cu-Ce was discussed.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


2018 ◽  
Vol 42 (13) ◽  
pp. 11109-11116 ◽  
Author(s):  
R. Salimi ◽  
A. A. Sabbagh Alvani ◽  
N. Naseri ◽  
S. F. Du ◽  
D. Poelman

A new plasmonic Ag hybridized CuWO4/WO3 heterostructured nanocomposite was successfully synthesized via a ligand-assisted sol gel method and the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2014 ◽  
Vol 1025-1026 ◽  
pp. 621-627
Author(s):  
Qin Mei Peng ◽  
Bo Li ◽  
Jin Wang ◽  
Ji Jiao Li ◽  
Ji Zhou

Three-dimensional (3-D) periodic hematite scaffold was successfully fabricated by direct writing method as a catalyst for degradation of organic contaminants. Photo-catalytically active α-Fe2O3 nanoparticles have been synthesized by sol-gel technique. Aqueous slurries of iron oxides were freeform fabricated to produce hematite scaffolds with a 3-D periodic architecture and multiscale porosity. The catalytic activity of the hematite scaffolds was evaluated in the degradation of Methylene Blue (MB). It was found that the degradation rate of MB dye was over 83%. The result strongly indicates that the hematite scaffolds exhibits a high catalytic activity. Moreover, this work provides an important step forward in the creation of suitable structures for photocatalyst.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 321 ◽  
Author(s):  
Di Zhu ◽  
Xinling Wang ◽  
Huiting An ◽  
Yan Zhong ◽  
Dianhui Wang ◽  
...  

The pyrochlore-type (Sr0.6Bi0.305)2Bi2O7 (SBO), containing Bi3+ and Bi5+ mixed valent states, was recently found to be used as a new visible light responsive photocatalyst. Novel SBO/SnO2 heterostructured composites were synthesized through a facile one-step hydrothermal method. The phase structure, morphology, chemical composition, and optical properties of the obtained samples were characterized by XRD, SEM, TEM, XPS, and UV-vis DRS. Compared to pure SBO and SnO2, the synthesized SBO/SnO2 composites exhibited significantly enhanced photocatalytic efficiency. The results indicated that the photoinduced holes and superoxide radicals play a dominant role and are the main reactive species during the degradation of Methylene Blue (MB) solution under visible light irradiation. Heterojunctions, formed in samples, directly contribute to the improvement of photocatalytic efficiency of SBO/SnO2 composites, since it not only broadens the light response range, but also accelerates the separation of photogenerated carriers.


Sign in / Sign up

Export Citation Format

Share Document