Automotive Light-Weighting Using Aluminium Metal Matrix Composites

2015 ◽  
Vol 828-829 ◽  
pp. 485-491 ◽  
Author(s):  
Francis Nturanabo ◽  
Leonard M. Masu ◽  
Gonasagren Govender

The automotive manufacturing industry, worldwide, has been engaged in a race to produce lightweight vehicles. Consequently, the industry continues to deploy significant resources in developing and utilising advanced lightweight materials and cutting-edge technologies in the manufacture of new vehicle models that are energy efficient, more reliable, safer, more user-friendly and less polluting; without compromising the other important vehicle attributes such as, size, cargo space and payload, structural integrity, power and acceleration. Mass reduction is one consistent and cost-effective strategy that can be combined with other efficiency improvement strategies and technologies to meet the requirements of fuel economy and emission reduction. The materials used in automotive light-weighting must fulfil several criteria imposed by regulation and legislation with the environment in addition to satisfying customer requirements. The choice for light, high strength automotive materials is between advanced high-strength steel (AHSS) on one hand, and composites of aluminium (aluminium metal matrix composites (AlMMCs)), magnesium and polymers, on the other. In this paper, the potential of AlMMCs as a replacement for most steels and aluminium alloys in the manufacture of automotive parts and components is discussed as well as their current status and future trends of utilisation in automotive light-weighting.

2019 ◽  
Vol 3 ◽  
pp. 89-97
Author(s):  
RAJESH KUMAR BEHERA ◽  
SARAT CHANDRA PANIGRAHI ◽  
BIRAJENDU PRASAD SAMAL ◽  
PRAMOD KUMAR PARIDA

Material world requires a strong research to produce a new class of materials having light weight, higher strength and better performances. This has been leads to investigate for high strength light weight alloy. The main objective in developing aluminium metal matrix composites is to provide enhanced characteristic performances and properties above the currently available materials.  Based upon the literature a new type of aluminium composite has been tries to develop which will offer attractive mechanical properties such as high strength, easy machinability, appreciable density, and low manufacturing cost etc. Aluminum powders of 99.55% purity and 325 mesh sizes are mixed with alloying metals like Copper, Magnesium, Silicon and Silicon Carbide powders in a precisely controlled quantity. During the process of powder metallurgy (P/M) product preparation, it was minutely observed to attain the maximum efficiency and accuracy. Aluminium (Al) is a light weight material but doesn’t possess a good strength. To achieve this, Copper (Cu), Silicon (Si), Magnesium (Mg) & Silicon Carbide (SiC) powders were blended with it at required proportions. The compaction was carried out with help of a C-45 steel die by power compaction press with a load of 150KN to 250KN. The obtained green products were sintered in a Muffle furnace to produce the final Aluminium Metal Matrix Composites (AMMCs) product.


2007 ◽  
Vol 23 ◽  
pp. 51-58 ◽  
Author(s):  
E.M. Ruiz-Navas ◽  
M.L. Delgado ◽  
José M. Torralba

Consolidation of aluminium alloys by sintering present a main problem: the oxide layer that cover aluminium particles. Some alternatives are studied in this work as solution to the oxide layer problem during the sintering of series 2xxx aluminium alloys. One of these solutions is related to the addition of tin traces, and the other is the addition of a second alloy. Moreover, aluminium metal matrix composites are characterized by excellent properties as combination of properties which comes from the matrix and from the reinforcement. In the first part of this work is analyzed the influence of trace additions, and the last part of this study is focused to the analysis of one aluminium matrix composite as the influence of several quantities of reinforcement.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012193
Author(s):  
Anup Choudhury ◽  
Jajneswar Nanda ◽  
Sankar Narayan Das

Abstract This paper interprets the effect of sintering parameters like sintering time and sintering temperature as well as various sintering methods on distinct properties of the material. The variation of Physical, mechanical, and Tribological behaviour depending on sintering temperature, time and method based on various aluminium metal matrix composites have been investigated. The advantages of aluminium metal matrix composites are high strength to weight ratio, high wear resistance, and erosion resistance, etc. Aluminium Metal matrix composites have vast applications in various fields like structural, automobile, and aviation industries. The optimum value of sintering parameters and choice of sintering methods has a major role in getting these required properties of aluminium metal matrix composites prepared by the powder metallurgy process.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6386
Author(s):  
Poonam Yadav ◽  
Alok Ranjan ◽  
Harish Kumar ◽  
Abhishek Mishra ◽  
Jonghun Yoon

The growing demand for composite materials with improved properties is attracting a lot of attention from industries such as automotive, aerospace, military, aviation, and other manufacturing. Aluminium metal matrix composites (AMMCs), with various reinforcements such as continuous/discontinuous fibers, whiskers, and particulates, have captured the attention due to their superior tribological, mechanical, and microstructural characteristics as compared to bare Al alloy. AMMCs have undergone extensive research and development with different reinforcements in order to obtain the materials with the desired characteristics. In this paper, we present a review on AMMCs produced through stir casting routes. This review focuses on the following aspects: (i) different reinforcing materials in AMMCs; (ii) microstructural study of reinforced metal matrix composites (MMCs) through stir casting. Both reinforcing micro- and nanoparticles are focused. Micro- and nanoreinforced AMMCs have the attractive properties of combination such asthe low-weight-to-high-strength rati and, low density; (iii) various tribological and mechanical properties with the consideration of different input parameters; (iv) outlook and perspective.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


Author(s):  
M. Sangeetha ◽  
Nivin Joy ◽  
G. Sriram Adhisheshan ◽  
J. Arul Kennady ◽  
S. Kamalinee ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


Author(s):  
B. Vijaya Ramnath ◽  
C. Parswajinan ◽  
R. Dharmaseelan ◽  
K. Thileepan ◽  
K. Nithin Krishna

Sign in / Sign up

Export Citation Format

Share Document