The Treated Cellulose Micro/Nano Fibers (CMNF) from Bioresources in Malaysia

2016 ◽  
Vol 846 ◽  
pp. 434-439 ◽  
Author(s):  
Fauziah Abdul Aziz ◽  
Ariffin Ismail ◽  
Wan Yunus Wan Md Zin ◽  
Norazman Mohamad Nor ◽  
Risby Mohd Sohaimi ◽  
...  

Cellulose Micro/Nano fibers (CMNF) from various plants which is Resak (Vatica spp.) waste, Merbau (Intsia bijuga) waste, banana (Musa acuminata) pseudo-stem and pineapple (Ananas comosus) leaf fibers have been isolated and characterized. Isolation of microfibril cellulose from raw fibers was achieved using alkaline treatment and bleaching. The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Characterizations of treated and untreated samples were compared. The comparison between those treated and untreated samples giving different crystallite size, crystallinity, arrangement of CMNF and surface morphology from different plants. Hence, with these information different nanocomposite from CMNF can be constructed and manipulated for various application.

2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4424 ◽  
Author(s):  
Mehrdad Khatami ◽  
Mina Sarani ◽  
Faride Mosazadeh ◽  
Mohammadreza Rajabalipour ◽  
Alireza Izadi ◽  
...  

Nanoparticles of cerium oxide CeO2 are important nanomaterials with remarkable properties for use in both industrial and non-industrial fields. In a general way, doping of oxide nanometric with transition metals improves the properties of nanoparticles. In this study, nickel- doped cerium oxide nanoparticles were synthesized from Stevia rebaudiana extract. Both doped and non-doped nanoparticles were characterized by X-ray diffraction, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray, Raman spectroscopy, and Vibrating-Sample Magnetometry analysis. According to X-ray diffraction, Raman and Energy Dispersive X-ray crystalline and single phase of CeO2 and Ni doped CeO2 nanoparticles exhibiting fluorite structure with F2g mode were synthesized. Field Emission Scanning Electron Microscopy shows that CeO2 and Ni doped nanoparticles have spherical shape and sizes ranging of 8 to 10 nm. Ni doping of CeO2 results in an increasing of magnetic properties. The enhancement of ultraviolet protector character via Ni doping of CeO2 is also discussed.


2008 ◽  
Vol 8 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Chunxia Li ◽  
Cuikun Lin ◽  
Xiaoming Liu ◽  
Jun Lin

Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4. The transmission electron microscopy and field emission scanning electron microscopy images illustrate that the powders consist of spherical particles with sizes from 120 to 160 nm, which are the aggregates of even smaller nanoparticles ranging from 10 to 20 nm. Under UV light or electron beam excitation, the CaWO4 powder exhibited a blue emission band with a maximum at 430 nm originating from the WO2−4 groups, while the CaWO4:Eu3+ powder showed red emission dominated by 613 nm ascribed to the 5D0 → 7F2 of Eu3+, and the CaWO4:Tb3+ powders showed emission at 544 nm, ascribed to the 5D4 → 7F5 transition of Tb3+. The PL excitation and emission spectra suggest that the energy is transferred from WO2−4 to Eu3+CaWO4:Eu3+ and to Tb3+ in CaWO4:Tb3+. Moreover, the energy transfer from WO2−4 to Tb3+ in CaWO4:Tb3+ is more efficient than that from WO2−4 to Eu3+ in CaWO4:Eu3+. This novel and efficient pathway could open new opportunities for further investigating the novel properties of tungstate materials.


2012 ◽  
Vol 531-532 ◽  
pp. 614-617 ◽  
Author(s):  
Gunawan ◽  
I. Sopyan ◽  
A. Naqshbandi ◽  
S. Ramesh

Biphasic calcium phosphate powders doped with zinc (Zn-doped BCP) were synthesized via sol-gel technique. Different concentrations of Zn have been successfully incorporated into biphasic calcium (BCP) phases namely: 1%, 2%, 3%, 5%, 7%, 10% and 15%. The synthesized powders were calcined at temperatures of 700-900°C. The calcined Zn-doped BCP powders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential and thermogravimetric analysis (TG/DTA) and field-emission scanning electron microscopy (FESEM). X-ray diffraction analysis revealed that the phases present in Zn-doped are hydroxyapatite, β- TCP and parascholzite. Moreover, FTIR analysis of the synthesized powders depicted that the bands of HPO4 increased meanwhile O-H decreased with an increase in the calcination temperature. Field emission scanning electron microscopy (FESEM) results showed the agglomeration of particles into microscale aggregates with size of the agglomerates tending to increase with an increase in the dopant concentration.


RSC Advances ◽  
2016 ◽  
Vol 6 (105) ◽  
pp. 102972-102978 ◽  
Author(s):  
Yu Dong ◽  
Ziting Wang ◽  
Xin Yang ◽  
Meiying Zhu ◽  
Rufen Chen ◽  
...  

Natrojarosite particles were prepared by forced hydrolysis. X-ray diffraction and field-emission scanning electron microscopy were used to characterize the resulting products.


2021 ◽  
Vol 10 (4) ◽  
pp. 84-87
Author(s):  
Maya Sari ◽  
Yolanda Rati ◽  
Tetty Marta Linda ◽  
Yanuar Hamzah ◽  
Ari Sulistyo Rini

 Abstrak. Dalam rangka mengurangi pemakaian bahan kimia berbahaya, kini telah mulai dikembangkan penggunaan bahan alami pada proses pembentukan nanopartikel. Pada penelitian ini, biosintesis nanopartikel ZnO dilakukan menggunakan ekstrak kulit Ananas comosus sebagai agen capping sekaligus agen pereduksi. Seng nitrat digunakan sebagai prekursor dari ion seng, sedangkan kulit nanas dibuat menjadi ekstrak untuk dimanfaatkan kandungan antioksidannya. Sampel ZnO dipelajari sifat fisisnya dari hasil karakterisasi X-ray diffraction (XRD), scanning electron microscopy (SEM) dan spektroskopi UV-Vis. Berdasarkan pola XRD, nanopartikel ZnO memberikan fasa kristal heksagonal wurtzite dengan ukuran kristal 14 nm. Morfologi SEM masing-masing sampel didapatkan berbentuk bunga atau micro-nanoflower dengan ukuran diameter rata-rata 510 nm dan 560 nm untuk sampel 0,01 M dan 0,025 M. Hasil spektrum absorbansi UV-Vis menunjukkan peningkatan puncak penyerapan cahaya dengan penambahan konsentrasi seng nitrat. Berdasarkan informasi sifat fisis ini, sampel ZnO berpotensi diaplikasikan sebagai material fotokatalis.Abstract. In order to reduce the use of hazardous chemicals, the use of natural ingredients has now been developed in the process of forming nanoparticles. In this study, biosynthesis of ZnO nanoparticles was carried out using Ananas comosus peel extract as capping agent and reducing agent. Zinc nitrate was used as a precursor to zinc ion. The physical properties of ZnO samples were studied from the characterization result of scanning electron microscopy (SEM), UV-Vis spectroscopy, and X-ray diffraction (XRD). The SEM morphology of each different sample was obtained in the form of micro-nanoflower with an average diameter  of 510 nm and 560 nm for 0.01 M and 0.025 M samples, respectively. The UV-Vis absorbance spectrum results showed an increase in the light absorption peak as  zinc nitrate concentration increased. According to the XRD pattern, the ZnO nanoparticles possessed an hexagonal wurtzite crystal phase with a crystal size of 14 nm. Based on this information on physical properties, the ZnO sample has the potential to be applied as a photocatalyst material.


2012 ◽  
Vol 174-177 ◽  
pp. 516-519
Author(s):  
Yong Gang Wang ◽  
Lin Lin Yang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

The BiFeO3 hollow crystals were successfully prepared at 200oC by a Al3+assisted hydrothermal method. The structures and morphologies of the as-obtained products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (SEM). A morphology evolution from irregular shape to square, hollow, and sphere-like was observed as the Al ions concentration varied from 0% to 1.5%. The possible growth mechanism of the BiFeO3hollow crystals was also discussed.


2015 ◽  
Vol 1754 ◽  
pp. 129-134
Author(s):  
Sanjay Kr. Jana ◽  
Saptarsi Ghosh ◽  
Syed Mukulika Dinara ◽  
Apurba Chakraorty ◽  
D. Biswas

AbstractThe work presents a comparative study on GaN/AlGaN type-II heterostructures grown on c-plane Al2O3 and Si (111) substrates by Plasma Assisted Molecular Beam Epitaxy. The in-depth structural characterizations of these samples were performed by High-Resolution X-Ray Diffraction, X-ray Reflectivity and Field Emission Scanning Electron Microscopy. The in-plane and out-of plane strains were determined from measured c- and a-lattice parameters of the epilayers from reciprocal space mapping of both symmetric triple axis (002) and asymmetric grazing incidence (105) double axis mode. The mosaicity parameters like tilt and correlation lengths were also calculated from reciprocal space mapping. Moreover, the twist angle was measured from skew symmetric off axis scan of (102), (103), and (105) planes along with (002) symmetric plane. The defect density were measured from the full width at half maxima of skew symmetric scan of (002) and (102) reflection planes. Also, the strained states of all the layers were analyzed and corresponding Al mole fraction was calculated based on anisotropic elastic theory. The thicknesses of the layers were measured from simulation of the nominal structure by fitting with X-ray Reflectivity experimental curves and also by comparing with cross sectional Field Emission Scanning Electron Microscopy micrographs.


2014 ◽  
Vol 936 ◽  
pp. 452-458
Author(s):  
Di Huo

The surface morphology and structure of the cubic stoichiometric spinel LiMn2O4powder prepared by microwave heating were examined using X-ray diffraction, scanning electron microscopy and transmittance electron microcopy. It is shown that the surface morphology of LiMn2O4particle changed with increasing preparing temperature, while the crystal structure kept unchanged. Novel nanostructured morphologies including nanorods and nanowhiskers were formed under appropriate synthesis conditions. The growth mechanism of the nanostructured morphology of spinel LiMn2O4was discussed in accordance with period bonding chains (PBCs) theory.


2019 ◽  
Vol 89 (8) ◽  
pp. 1229
Author(s):  
С.В. Ягупов ◽  
Н.И. Снегирёв ◽  
К.А. Селезнева ◽  
Е.Т. Милюкова ◽  
Ю.А. Могиленец ◽  
...  

Surface morphology and crystal structure of iron borate, FeBO3, annealed at different temperatures, have been studied by scanning electron microscopy and X-ray diffraction analysis. The temperature range of structurally stability of iron borate has been determined. It has been established that in the range of temperatures 800–900°C recrystallization in the iron orthoborate Fe3BO6 phase, and more than 900°C − in α-Fe2O3 phase, occurs.


Sign in / Sign up

Export Citation Format

Share Document