Constraint Effect on the Ductile Fracture Behavior of High-Strength Pipeline Steels

2016 ◽  
Vol 850 ◽  
pp. 899-904
Author(s):  
Jie Xu ◽  
Xiao Min Zhuo ◽  
Peng Peng Li ◽  
Yu Fan ◽  
Zhi Sun

This work presents an investigation of the ductile tearing properties for a pipe with internal and external circumferential cracks using 2D plane strain and axisymmetric models. Crack growth resistance curves were computed using the complete Gurson model. The pipes with various crack depths and internal pressures were analyzed. The results were compared with those of corresponding SENT and SENB specimens. It clearly indicated a significant effect of constraint on the resistance curves for internal and external cracked pipes. A minor effect of hoop stress induced by internal pressure on the CTOD-resistance curves is expected for deep-cracked pipes. The SENT specimen is a better representation of circumferentially flawed pipes and an alternative to the conventional standard SENB specimen for the fracture mechanics testing in engineering critical assessment of high-strength pipeline steels.

Author(s):  
Mauri´cio Carvalho Silva ◽  
Eduardo Hippert ◽  
Claudio Ruggieri

This work presents an investigation of the ductile tearing properties for API 5L X70 and X80 pipeline steels using experimentally measured crack growth resistance curves (J-R curves). Testing of the pipeline steels employed compact tension (C(T)) fracture specimens to determine the J-R curves based upon the unloading compliance method using a single specimen technique in accordance with the ASTM E1820 standard procedure. Conventional tensile tests and Charpy V-Notch tests were also performed to determine the mechanical and impact properties for the tested materials. Severe splitting running parallel with the crack propagation path with varied lengths was observed in all tested fracture specimens, particularly for the API X80 material. The occurrence of splits makes the determination of JIc and resistance curves more difficult, as delamination of interfaces positioned normal to the crack front decreases the effective thickness of the test piece, inducing plane stress conditions deep inside the specimen. This experimental characterization provides additional toughness and mechanical data against which the general behavior of X70 and X80 class pipeline steel can be compared.


Author(s):  
Claudinei Ferreira ◽  
Diego F. S. Burgos ◽  
Claudio Ruggieri

Abstract This work presents an investigation of the ductile tearing properties for a girth weld made of an ASTM A106 Gr C steel using the SMAW welding process with a low hydrogen E7018 electrode thereby resulting in a weld with high strength overmatching with respect to the base material. Testing of the pipe girth welds employed side-grooved, clamped SE(T) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using a single specimen technique. Recently developed compliance functions and η-factors applicable to weld centerline notched SE(T) specimens are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records. While the UC procedure resulted in measured crack extensions for the tested specimens with weld centerline notch that underestimated the 9-point average crack extension, our preliminary results demonstrate the capability of the methodology in describing crack growth resistance behavior which serves as a basis for ductile tearing assessments in ECA procedures applicable to overmatched girth welds and similar structural components.


2015 ◽  
Vol 1115 ◽  
pp. 207-212 ◽  
Author(s):  
M.H.A. Musa ◽  
Md Abdul Maleque ◽  
Mohammad Yeakub Ali ◽  
Muhammad Hasibul Hasan

The increasing demand for natural gas and oil as an important energy sources has led to rising the application of high strength low alloy steels (HSLA), which indicates continued growth of pipeline installations and the qualification of the actual pipeline network. A difficult problem to be solved for the economic and safe operation of high pressure pipelines is the control of ductile fracture propagation. As a result, the accurate estimation of the resistance to fracture and ductile fracture arrest in pressurized pipelines are important issues. Technology to ensure such control is critical for the structural integrity and safety of pipelines because the possibility of a running fracture opens-up lead to the catastrophic long-running failure of a pipeline which involve public safety and property damage and environment impact. The integrity and high reliability of pipelines depend on various factors including mechanical damage or external interference, fatigue cracks, material defects, weld cracks, improper welding, internal or external corrosion and, most of all, on the ageing of the physical state of the pipeline material and the welded joints during their prolonged use. In order to understand the current problems in the pipeline materials and to develop steels with higher strength, better toughness and weldability, this paper gives brief overview of the comprehensive of fracture behavior including crack initiation and propagation of high strength low alloy pipeline steels.


Author(s):  
Sebastian Cravero ◽  
Claudio Ruggieri ◽  
Roberto Piovatto ◽  
Waldek W. Bose ◽  
Dirceu Spinelli

This work presents an investigation of the ductile tearing properties for an API 5L X60 pipeline steel using experimentally measured crack growth resistance curves (J-R curves). Use of these materials are motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the Brazilian oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline steels employed side-grooved SE(T) specimen with varying crack size to determine the J-R curves based upon the unloading compliance method using a single specimen technique. Recent developed compliance functions and eta-factors applicable for SE(T) fracture specimens are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records. This experimental characterization provides additional toughness data which serve to evaluate crack growth resistance properties of pipeline steels using SE(T) specimens with varying geometries.


Author(s):  
Leonardo L. S. Mathias ◽  
Diego F. B. Sarzosa ◽  
Claudio Ruggieri

Structural integrity assessments of pipe girth welds play a key role in design and safe operation of piping systems, including deep water steel catenary risers. Current methodologies for structural integrity assessments advocate the use of geometry dependent resistance curves so that crack-tip constraint in the test specimen closely matches the crack-tip constraint for the structural component. Testing standards now under development to measure fracture resistance of pipeline steels (J and CTOD) most often employ single edge notched specimens under tension (SENT) to match a postulated defect in the structural component. This paper presents an investigation of the ductile tearing properties for a girth weld of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves). Testing of the girth weld pipeline steels employed clamped SE(T) specimen with center-crack weld and three-point bending SE(B) (or SENB) specimens to determine the J-R curves. Tests involving SE(B) specimens are usually considered conservative, however, the comparison between this two methods may point an accurate alternative for girth weld assessments, since adequate geometry is adopted to describe accurately the structure’s behavior.


2006 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
V. Miska ◽  
J.H.J.M. van der Graaf ◽  
J. de Koning

Nowadays filtration processes are still monitored with conventional analyses like turbidity measurements and, in case of flocculation–filtration, with phosphorus analyses. Turbidity measurements have the disadvantage that breakthrough of small flocs cannot be displayed, because of the blindness regarding changes in the mass distributions. Additional particle volume distributions calculated from particle size distributions (PSDs) would provide a better assessment of filtration performance. Lab-scale experiments have been executed on a flocculation–filtration column fed with effluent from WWTP Beverwijk in The Netherlands. Besides particle counting at various sampling points, the effect of sample dilution on the accuracy of PSD measurements has been reflected. It was found that the dilution has a minor effect on PSD of low turbidity samples such as process filtrate. The correlation between total particle counts, total particle volume (TPV) and total particle surface is not high but is at least better for diluted measurements of particles in the range 2–10 μm. Furthermore, possible relations between floc-bound phosphorus and TPV removal had been investigated. A good correlation coefficient is found for TPV removal versus floc-bound phosphorus removal for the experiments with polyaluminiumchloride and the experiments with single denitrifying and blank filtration.


2020 ◽  
Vol 240 ◽  
pp. 117681
Author(s):  
Mehran Aziminezhad ◽  
Sahand Mardi ◽  
Pouria Hajikarimi ◽  
Fereidoon Moghadas Nejad ◽  
Amir H. Gandomi

2021 ◽  
Vol 231 ◽  
pp. 111750
Author(s):  
Wen-Yu Cai ◽  
Jian Jiang ◽  
Yan-Bo Wang ◽  
Guo-Qiang Li

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Brassac ◽  
Quddoos H. Muqaddasi ◽  
Jörg Plieske ◽  
Martin W. Ganal ◽  
Marion S. Röder

AbstractTotal spikelet number per spike (TSN) is a major component of spike architecture in wheat (Triticumaestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years. The QTL on chromosome 7B explained up to 20.5% of phenotypic variance. In its physical interval (7B: 6.37–21.67 Mb), the gene FLOWERINGLOCUST (FT-B1) emerged as candidate for the observed effect. In one of the parental lines, FT-B1 carried a non-synonymous substitution on position 19 of the coding sequence. This mutation modifying an aspartic acid (D) into a histidine (H) occurred in a highly conserved position. The mutation was observed with a frequency of ca. 68% in a set of 135 hexaploid wheat varieties and landraces, while it was not found in other plant species. FT-B1 only showed a minor effect on heading and flowering time (FT) which were dominated by a major QTL on chromosome 5A caused by segregation of the vernalization gene VRN-A1. Individuals carrying the FT-B1 allele with amino acid histidine had, on average, a higher number of spikelets (15.1) than individuals with the aspartic acid allele (14.3) independent of their VRN-A1 allele. We show that the effect of TSN is not mainly related to flowering time; however, the duration of pre-anthesis phases may play a major role.


Sign in / Sign up

Export Citation Format

Share Document