Time Dependent Dielectric Breakdown in High Quality SiC MOS Capacitors

2016 ◽  
Vol 858 ◽  
pp. 615-618 ◽  
Author(s):  
Zakariae Chbili ◽  
Kin P. Cheung ◽  
Jason P. Campbell ◽  
Jaafar Chbili ◽  
Mhamed Lahbabi ◽  
...  

In this paper we report TDDB results on SiO2/SiC MOS capacitors fabricated in a matured production environment. A key feature is the absence of early failure out of over 600 capacitors tested. The observed field accelerations and activation energies are higher than what is reported on SiO2/Si of similar oxide thickness. The great improvement in oxide reliability and the deviation from typical SiO2/SiC observations are explained by the quality of the oxide in this study.

1993 ◽  
Vol 303 ◽  
Author(s):  
G. W. Yoon ◽  
A. B. Joshi ◽  
J. Kim ◽  
D. L. Kwong

ABSTRACTIn this paper, a detailed reliability investigation is presented for ultra-thin tunneling (∼50 Å) oxides grown in N2O ambient using rapid thermal processing (RTP). These N2Oss-oxides are compared with oxides of identical thickness grown in O2 ambient by RTP. The reliability investigations include time-dependent dielectric breakdown as well as stress-induced leakage current in MOS capacitors with these gate dielectrics. Results show that ultra-thin N2O-oxides show much improved reliability as compared to oxide grown in O2 ambient.


2013 ◽  
Vol 740-742 ◽  
pp. 745-748 ◽  
Author(s):  
J. Sameshima ◽  
Osamu Ishiyama ◽  
Atsushi Shimozato ◽  
K. Tamura ◽  
H. Oshima ◽  
...  

Time-dependent dielectric breakdown (TDDB) measurement of MOS capacitors on an n-type 4 ° off-axis 4H-SiC(0001) wafer free from step-bunching showed specific breakdown in the Weibull distribution plots. By observing the as-grown SiC-epi wafer surface, two kinds of epitaxial surface defect, Trapezoid-shape and Bar-shape defects, were confirmed with confocal microscope. Charge to breakdown (Qbd) of MOS capacitors including an upstream line of these defects is almost the same value as that of a Wear-out breakdown region. On the other hand, the gate oxide breakdown of MOS capacitors occurred at a downstream line. It has revealed that specific part of these defects causes degradation of oxide reliability. Cross-sectional TEM images of MOS structure show that gate oxide thickness of MOS capacitor is non-uniform on the downstream line. Moreover, AFM observation of as-grown and oxidized SiC-epitaxial surfaces indicated that surface roughness of downstream line becomes 3-4 times larger than the as-grown one by oxidation process.


2010 ◽  
Vol 97-101 ◽  
pp. 40-44
Author(s):  
Mohd Zahrin A. Wahab ◽  
Azman Jalar ◽  
Shahrum Abdullah ◽  
Hazian Mamat

This paper presents Time Dependent Dielectric Breakdown (TDDB) testing of gate oxide on 0.5µm BiCMOS Technology. The gate oxide quality for the technology has been investigated and furthermore to qualify the whole set up of the foundry from the process, equipment, cleanroom control and raw material used to produce high quality gate oxide and hence good quality of BiCMOS devices. TDDB test is the most widely used testing to check the quality of gate oxide and in this paper the TDDB test done on MOS capacitors fabricated using 0.5 µm BiCMOS Technology. Seven consecutive qualification lots have been tested and the data shown that TDDB measurement is capable to differentiate between accepted wafer and rejected wafer. The data also shown that TDDB test was capable to characterise 0.5 µm BiCMOS gate oxide with higher yield and comparable with reference lot from other foundry fab.


2009 ◽  
Vol 615-617 ◽  
pp. 557-560 ◽  
Author(s):  
Takuma Suzuki ◽  
Junji Senzaki ◽  
Tetsuo Hatakeyama ◽  
Kenji Fukuda ◽  
Takashi Shinohe ◽  
...  

The oxide reliability of metal-oxide-semiconductor (MOS) capacitors on 4H-SiC(000-1) carbon face was investigated. The gate oxide was fabricated by using N2O nitridation. The effective conduction band offset (Ec) of MOS structure fabricated by N2O nitridation was increased to 2.2 eV compared with Ec = 1.7 eV for pyrogenic oxidation sample of. Furthermore, significant improvements in the oxide reliability were observed by time-dependent dielectric breakdown (TDDB) measurement. It is suggested that the N2O nitridation as a method of gate oxide fabrication satisfies oxide reliability on 4H-SiC(000-1) carbon face MOSFETs.


2001 ◽  
Vol 11 (03) ◽  
pp. 751-787 ◽  
Author(s):  
J. W. McPHERSON

A molecular physics-based complementary model, which includes both field-induced and current-induced degradation mechanisms, is used to help resolve the E versus 1/E time-dependent dielectric breakdown (TDDB) model controversy that has existed for many years. The Complementary Model indicates either the E or 1/E–TDDB model can be valid for certain specified field, temperature, and molecular bonding-energy ranges. For bond strengths <3 eV, the bond breakage rate is generally dominated by field-enhanced thermal processes at lower fields and elevated temperatures where the E-model is valid. At higher fields, lower temperatures and higher bond strengths the bond breakage mechanism must be hole-catalyzed and the TDDB physics is described well by the 1/E-model. Neither the E-model nor 1/E-model works well for oxide thickness below tox < 4 nm where direct tunneling effects dominate in these hyper-thin films. The increase in DT leakage leads to more hole injection and trapping in the SiO 2. This enhanced dielectric degradation rate with tox reduction can be easily incorporated into the Complementary Model where hole capture serves to catalyze Si–O bond breakage.


2008 ◽  
Vol 8 (4) ◽  
pp. 635-641 ◽  
Author(s):  
Moshe Gurfinkel ◽  
Justin C. Horst ◽  
John S. Suehle ◽  
Joseph B. Bernstein ◽  
Yoram Shapira ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1131-1134 ◽  
Author(s):  
Kevin Matocha ◽  
Zachary Stum ◽  
Steve Arthur ◽  
Greg Dunne ◽  
Ljubisa Stevanovic

SiC vertical MOSFETs were fabricated and characterized to achieve a blocking voltage of 950 Volts and a specific on-resistance of 8.4 mW-cm2. Extrapolations of time-dependent dielectric breakdown measurements versus applied electric field indicate that the gate oxide mean-time to failure is approximately 105 hours at 250°C.


2011 ◽  
Vol 679-680 ◽  
pp. 354-357
Author(s):  
Jody Fronheiser ◽  
Aveek Chatterjee ◽  
Ulrike Grossner ◽  
Kevin Matocha ◽  
Vinayak Tilak ◽  
...  

The gate oxide reliability and channel mobility of carbon face (000-1) 4H Silicon Carbide (SiC) MOSFETs are investigated. Several gate oxidation processes including dry oxygen, pyrogenic steam, and nitrided oxides were investigated utilizing MOS capacitors for time dependent dielectric breakdown (TDDB), dielectric field strength, and MOSFETs for inversion layer mobility measurements. The results show the C-face can achieve reliability similar to the Si-face, however this is highly dependent on the gate oxide process. The reliability is inversely related to the field effect mobility where other research groups report that pyrogenic steam yields the highest electron mobility while this work shows it has weakest oxide in terms of dielectric strength and shortest time to failure.


Sign in / Sign up

Export Citation Format

Share Document