Grain Refinement in an Al-Zn-Mg-Cu Casting Ingot

2016 ◽  
Vol 877 ◽  
pp. 104-108
Author(s):  
Xiao Dong Wu ◽  
Bin Liao ◽  
Chang Jian Yan ◽  
Li Huang ◽  
Ling Fei Cao

The grain refinement in a high specific strength Al-Zn-Mg-Cu casting ingot was studied by add different amount of Al-Ti-C and Al-Ti-B master alloys during casting. The optical microscopy observation shows that the grain size of ingot is greatly reduced when adding Al-Ti-B as low as 0.01 wt%. Both the average size and the size difference among samples from various locations of ingots are smaller when the alloy casted with Al-Ti-B, which indicates that Al-Ti-B is effecient for the grain refinement in the Al-Zn-Mg-Cu casting ingot.

2014 ◽  
Vol 20 (3) ◽  
pp. 183-190
Author(s):  
Mehdi Dehnavi ◽  
Mohsen Haddad Sabzevar

Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA) has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study was to investigate the effect of grain refinement on the grain size of Al-4.8 wt.%Cu alloy by cooling curve analysis. To do this, alloy was grain refined by different amount of Al-5Ti-1B master alloy and all samples were solidified at constant cooling rate of 0.19 ℃/s. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. The results show that the segregating power of Ti is very high and it segregates to the nucleant–liquid interface which leads to constitutional supercooling within which other nucleant particles get activated for nucleation. Other results show that with considering the changes in the primary undercooling (ΔTRU) as the main factor to determine the effectiveness of grain refinement process, it was found that by grain refinement, the value of undercooling decrease was approximately zero. 


Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.


2005 ◽  
Vol 488-489 ◽  
pp. 889-892 ◽  
Author(s):  
Zhao Hui Wang ◽  
Yong Lin Kang ◽  
Wenchao Dong ◽  
Hongjin Zhao ◽  
Jin Wei Liu ◽  
...  

Magnesium alloys offer advantages of low density, high specific strength, machinability and availability. So it has been used more and more in many fields, such as automobile, communication etc. In this paper, grain refinement process and SiC nanoparticles reinforcement process are investigated for the purposes of increasing ultimate tensile strengthen and ductility of AM60B magnesium alloys. We find that after grain refinement process the ultimate tensile strength of AM60B alloys with permanent casting increase to 241MPa, which is about 27MPa higher than that of original alloys, and the elongation of it increases up to 20.1%, which is about 8.7% higher than that of original alloys. We added SiC nanoparticle into AM60B alloys in liquid state and found it could increase strength and ductility of alloys. By SiC nanoparticle reinforced process the ultimate tensile strength of magnesium alloys can increase up to 255MPa with the elongation of 19%.


2017 ◽  
Vol 898 ◽  
pp. 1231-1235 ◽  
Author(s):  
Shun Cheng Wang ◽  
Ji Lin Li ◽  
Chun Lei Gan ◽  
Kai Hong Zheng

The Al-5Ti-1B, Al-10Ti, Al-4B master alloys and TiB2 powder were applied to refine the pure aluminum, respectively. The effects of the TiAl3 phase, TiB2 particle, and AlB2 phase on the grain size of pure aluminum were compared. The grain refinement mechanism of the Al-5Ti-1B grain refiner was studied. The results showed that the TiAl3 phase was an effective heterogeneous nucleus of the α-Al grain. But the TiAl3 phase in the Al-5Ti-1B grain refiner was not the heterogeneous nucleus of the α-Al grain due to its re-melting in the Al melt. The separate TiB2 particle or AlB2 phase was not the heterogeneous nucleus of the α-Al grain. However, the TiB2 coated by the TiAl3 phase can be the effective heterogeneous nucleus of the α-Al grain. The grain refinement mechanism of the Al-5Ti-1B grain refiner can be summarized as follows: when the Al-5Ti-1B grain refiner is added into the Al melt, the TiAl3 phases are re-melted to release the Ti atoms, while the TiB2 particles are remaining in the Al melt. During the solidification of the Al melt, the Ti atoms are segregating on the surface of TiB2 particles to form the TiAl3 phases. The TiB2 particles coated by the TiAl3 phases then reacts with the Al melt to generate α-Al crystal nucleus.


2012 ◽  
Vol 05 ◽  
pp. 342-349
Author(s):  
M. S. MOHEBBI ◽  
A. AKBARZADEH

A novel SPD process for manufacturing high strength tubes and cylinders titled as accumulative spin-bonding (ASB) is proposed. This process is applied to a commercially pure aluminum up to four cycles and its effects on the microstructure and mechanical properties are examined by optical microscopy, TEM, microhardness and tension tests. The results show that ultra-fine grains are developed during the process leading to a nanostructure with average grain size in order of 150 nm. Mechanical properties indicate that while the hardness of outer layers is more than inner ones, the hardness and its homogeneity is increased by increasing the ASB cycles. As a result of grain refinement and the scheme of hardness development, the yield and tensile strength of material are increased significantly up to the values of 194 and 235 MPa, respectively.


2018 ◽  
Vol 192 ◽  
pp. 01036
Author(s):  
Krittee eidhed ◽  
Phisith muangnoy

In this paper, size and morphology of the grain refiner and modifier particles in the Al-3%B-3%Sr master alloy production by using different cooling rates were investigated. Two Al-3%B-3%Sr master alloys were produced with 0.2 and 10°C/s, respectively. The grain refinement and eutectic modification efficiency of the Al-3%B-3%Sr master alloy were tested in casting process of A356 alloy by addition of 4wt.% and holding times for 10-120 min. The experimental result showed that microstructure of the M1 alloy (Slow cooling) consisted of larger solidified particles of AlB2, SrB6 and Al4Sr in the matrix of α-Al compared to the M2 alloy (Rapid cooling). The addition of the M1 alloy in cast A356 alloy, it was found that small grain size and fully modify eutectic silicon were obtained from the holding time in a range of 10-60 min. While the addition of M2 alloy, a small grain size was achieved in shorter holding time in a range of 10-30 min but the eutectic silicon was partly modify. From the thermal analyzed result, solidification of un-modified A356 alloy was changed after addition of Al-3%B-3%Sr master alloy. It was clearly observed that both the undercooling of nucleation and eutectic reaction was reduced and the solidification time was shifted to longer.


2014 ◽  
Vol 794-796 ◽  
pp. 161-166 ◽  
Author(s):  
Mark A. Easton ◽  
Arvind Prasad ◽  
David H. St. John

Recent work has extended the Interdependence Model to the prediction of grain size of aluminium alloys when refined by Al-Ti-B master alloys. The relative contribution of Ti solute and TiB2 particles to the as-cast grain size was determined indicating the optimum level of addition required to provide cost effective use of master alloy. This paper quantifies the effect of Al5Ti1B master alloy additions on the grain size of Al-Si alloys. The Al-Si system is a special case where additions of Si above a few percent poison grain refinement resulting in larger grain sizes. Consideration of the complicating effect of Si poisoning on the prediction of the grain size of these alloys and possible approaches to dealing with these complications are presented.


2015 ◽  
Vol 828-829 ◽  
pp. 23-28 ◽  
Author(s):  
Vadakke Madam Sreekumar ◽  
N. Hari Babu ◽  
Dmitry G. Eskin ◽  
Z. Fan

In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4 was demonstrated in Al alloys. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. While cooling rate has an influence on the grain size reduction, higher levels of addition of master alloy was found to be not effective in further reducing the grain size.


Sign in / Sign up

Export Citation Format

Share Document