Wrinkling Behavior of a Woven Thermoplastic Composite Material

2017 ◽  
Vol 893 ◽  
pp. 26-30
Author(s):  
Lu Chen ◽  
Shankar Kalyanasundaram

This article examines the prediction of wrinkling initiation in self-reinforced thermoplastic composite materials for potential application in rapid forming of this class of materials. Whilst most of recent researches concentrate on examining metallic wrinkling behavior, this article aims to introduce a wrinkling indicator for composite sheet. The material system involved in the study is a self-reinforced polypropylene woven composite with a fiber orientation of 0°/90° along the warp and weft directions. Square specimens were stretched uniaxially along diagonal direction until the onset of wrinkling. It is observed that when the wrinkling occurs, strain increment ratio exhibits an abrupt change. This fundamental observation leads to the prediction of onset of wrinkling by using abrupt changes in strain increment ratio as a metric.

2017 ◽  
Vol 893 ◽  
pp. 21-25
Author(s):  
Lu Chen ◽  
Shankar Kalyanasundaram

In this work, experiments were conducted to examine the impact of fiber orientation of self-reinforced polypropylene on wrinkling phenomenon. Defects due to wrinkling are major quality issues in rapid forming of sheet materials. This article examines the influence of two fiber orientations [0°/90° and 45°/-45°] on wrinkling initiation of a self-reinforced polypropylene composite (Curv®) material system. It was found that 45°/-45° specimen wrinkles at smaller axial displacement compared to 0°/90° specimen. In both specimens, there was an abrupt change in strain increment ratio that corresponded to the onset of wrinkling. This phenomenon validates the robustness of the wrinkling indictor based on strain increment ratio concept.


2005 ◽  
Vol 297-300 ◽  
pp. 2897-2902 ◽  
Author(s):  
Jin Woo Kim ◽  
Jung Ju Lee ◽  
Dong Gi Lee

The study for strength calculation of one way fiber-reinforced composites and the study measuring precisely fiber orientation distribution were presented. However, because the DB that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed, we need the systematic study for that. Therefore, in this study, we investigated what effect the fiber content ratio and fiber orientation distribution have on the strength of composite sheet after making fiber reinforced polymeric composite sheet by changing fiber orientation distribution with the fiber content ratio. The result of this study will become a guide to design data of the most suitable parts design or fiber reinforced polymeric composite sheet that uses the fiber reinforced polymeric composite sheet in industry spot, because it was conducted in terms of developing products. We studied the effect the fiber orientation distribution has on tensile strength of fiber reinforced polymeric composite material and achieved this results below. We can say that the increasing range of the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation is getting wider as the fiber content ratio increases. It shows that the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation 90° is similar with the value of polypropylene’s intensity when fiber orientation function is J= 0.7, regardless of the fiber content ratio. Tensile strength of fiber reinforced polymeric composite is affected by the fiber orientation distribution more than by the fiber content ratio.


2019 ◽  
Vol 24 (3) ◽  
pp. 509-526
Author(s):  
A. Choudhury ◽  
S.C. Mondal ◽  
S. Sarkar

Abstract Failure analysis of laminated composite plates for different mechanical, thermo mechanical and hygro-thermo mechanical loads for different ply thicknesses, stacking sequences, fiber orientation angles and composite material systems is presented in the paper. A comparative study of different failure theories is also presented in the paper. The effect of fiber orientation angles on the first ply failure load is also studied. A hybrid composite laminate is developed based on the first ply failure load which minimizes weight and cost. The last ply failure load based on fully discounted method is calculated for different stacking sequences. An optimum composite material system and laminate layup is studied for a targeted strength ratio which minimizes weight.


2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


2021 ◽  
Author(s):  
VINCENZO OLIVERI ◽  
GIOVANNI ZUCCO ◽  
MOHAMMAD ROUHI ◽  
ENZO COSENTINO ◽  
RONAN O’HIGGINS ◽  
...  

The design of a multi-part aerospace structural component, such as a wingbox, is a challenging process because of the complexity arising from assembly and integration, and their associated limitations and considerations. In this study, a design process of a stiffeners-integrated variable stiffness three-bay wingbox is presented. The wingbox has been designed for a prescribed buckling and post-buckling performance (a prescribed real testing scenario) and made from thermoplastic composite material system (Carbon-PEEK) with the total length of three meters. The stiffeners and spars are integrated into the top and bottom panels of the wingbox resulting a single-piece blended structure with no fasteners or joints. The bottom skin also has an elliptical cut-out for access purposes. The composite tows are steered around this cutout for strain concentration reduction purposes. The fiber/tow steering in the top skin bays (compression side) has also been considered for improved compression-induced buckling load carrying capacity. The proposed design has been virtually verified via high fidelity finite element analysis.


2016 ◽  
Vol 23 (6) ◽  
pp. 1117-1135 ◽  
Author(s):  
Yu Wang ◽  
Jin Sun ◽  
Deng’an Cai ◽  
Guangming Zhou

Sign in / Sign up

Export Citation Format

Share Document