Relationship between Elastic Module and Porous Structure of Cancellous Bone

2018 ◽  
Vol 933 ◽  
pp. 309-313
Author(s):  
Yi Hao Du ◽  
Si Yuan He ◽  
Meng Ke Huo ◽  
Ping Zhou ◽  
Qiang Chen ◽  
...  

Trabecular bone, widely presented in the ends of long bones and chine, is a typically porous structure which provides a multifunction such as light weight, undertaking load, impact energy buffer and hosting marrow cells. The structure of trabecular is a dominant factor for the strength of cancellous bone. The prediction of the trabecular bone’s mechanical properties depending on the trabecular structure is very useful for the diagnosis and treatment of osteoporosis. The object of this study is to establish a relationship between the mechanical properties and topological, morphological parameters of trabecular bone. The 50 3-D data of cancellous bone are selected from the CT images of three caput femurs and disposed in BoneJ, through which the BV/TV, SMI and genus parameters of each samples are obtained. The deformation behaviors of trabecular bone are simulated in ABAQUS through uniaxial compression on the 3-D model derived from stack images. Then linear-regression analyses are conducted on the BV/TV, genus, SMI and apparent Young’s modulus, resulting a high correlation (R^2=0.84) between the Young’s modulus and the hybrid parameter derived from SMI and normalized genus, corresponding to morphological and topological parameter of the samples respectively. The result indicates that it’s promising to establish the relationship between mechanical properties of trabecular bone and their topological and morphological parameters.

2010 ◽  
Vol 452-453 ◽  
pp. 297-300
Author(s):  
Kazuto Tanaka ◽  
Yusuke Tanimoto ◽  
Yusuke Kita ◽  
Shinichi Enoki ◽  
Tsutao Katayama

To establish clinical bone assessment for osteoporosis, it is necessary to evaluate not only bone density but also trabecular bone microstructure and mechanical properties of bone. Therefore relationship between the micro-structural parameters and the mechanical properties of the cancellous bone of bovine distal femur was investigated. Compression test was carried out using universal testing machine to measure Young’s modulus and the ultimate strength. X-ray CT was used to obtain 3D image of specimens. Bone trabecular orientation was obtained from fabric ellipse by the MIL (Mean Intercept Length) analysis. Young’s modulus and ultimate strength had a high correlation with bone density respectively; furthermore ultimate strength had a high correlation with Young’s modulus.


2011 ◽  
Vol 243-249 ◽  
pp. 2310-2313 ◽  
Author(s):  
Hua Yan Yao ◽  
Zhen Hua Zhang ◽  
Zhao Hui Zhu

Water is an important factor that influences the mechanical properties of rock. Uniaxial compressive experiments have been carried out on sandstone under different cyclic times of drying and wetting. The corresponding complete stress-strain curves are obtained, and characteristics of deformation and failure are analyzed. Test results show that when sandstone samples are submitted to cyclic of drying and wetting, the uniaxial strength and Young's modulus of sandstone obviously decrease. Then, the improved Duncan constitutive model is developed, which can do better in describing sample’s deformation behaviors subject to different cyclic times of drying and wetting. Introduction


2015 ◽  
Vol 662 ◽  
pp. 142-146
Author(s):  
Zuzana Pramuková Vilčeková ◽  
Monika Kašiarová ◽  
Magdaléna Precnerová Domanická ◽  
Miroslav Hnatko ◽  
Pavol Šajgalík

The study deals with the development of highly porous undegradable ceramics based on silicon nitride as potential replacement of trabecular bone. These materials were produced using replication method with polyurethane foams as pore-forming agents to achieve similar porous structure to trabecular bone. Prepared porous ceramics had a bimodal pore structure with macro-pores larger than 200 μm and micro-pores smaller than 1 μm in diameter, which are necessary for tissue ingrowths, cell adhesion, adsorption of biological metabolites and nutrition delivery in organism. The microstructure and local mechanical properties (Young’s modulus and Yield strength) were evaluated and compared with human trabecular bone. Results showed that studied porous materials have satisfactory porosity and pore sizes for trabecular bone replacement. Young’s modulus of bone was 12.6 ± 2.23 GPa and porous silicon nitride samples ranged from 10.9 ± 3.38 GPa to 12.9 ± 1.13 GPa. The values of Yield strength of trabecular bone was determined as 493 ± 30.7 MPa and the values of porous samples varied from 250 ± 19.3 MPa to 558 ± 36.5 MPa. Young’s modulus and Yield strength increase with increasing of the pre-sintering temperature and multiple infiltrations.


2012 ◽  
Vol 1418 ◽  
Author(s):  
Steve Lee ◽  
Michael Porter ◽  
Scott Wasko ◽  
Grace Lau ◽  
Po-Yu Chen ◽  
...  

ABSTRACTNatural and synthetic hydroxyapatite (HA) scaffolds for potential load-bearing bone implants were fabricated by two methods. The natural scaffolds were formed by heating bovine cancellous bone at 1325°C, which removed the organic and sintered the HA. The synthetic scaffolds were prepared by freeze-casting HA powders, using different solid loadings (20–35 vol.%) and cooling rates (1–10°C/min). Both types of scaffolds were infiltrated with polymethylmethacrylate (PMMA). The porosity, pore size, and compressive mechanical properties of the natural and synthetic scaffolds were investigated and compared to that of natural cortical and cancellous bone. Prior to infiltration, the sintered cancellous scaffolds exhibited pore sizes of 100 – 300 μm, a strength of 0.4 – 9.7 MPa, and a Young’s modulus of 0.1 – 1.2 GPa. The freeze-casted scaffolds had pore sizes of 10 – 50 μm, strengths of 0.7 – 95.1 MPa, and Young’s moduli of 0.1 –19.2 GPa. When infiltrated with PMMA, the cancellous bone- PMMA composite showed a strength of 55 MPa and a Young’s modulus of 4.5 GPa. Preliminary data for the synthetic HA-PMMA composite showed a strength of 42 MPa and a modulus of 0.8 GPa.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Sign in / Sign up

Export Citation Format

Share Document