Experimental Study of Fiber-Reinforced Concrete Structures

2019 ◽  
Vol 945 ◽  
pp. 115-119 ◽  
Author(s):  
Sergey V. Klyuev ◽  
T.A. Khezhev ◽  
Yu.V. Pukharenko ◽  
A.V. Klyuev

Acute questions of steelfiber using for disperse-reinforced fine-grained concrete are considered in the article. Researchers of steelfiber concrete patterns are held. The efficiency of using crushing dropout of quartzitic sandstone is proven. The article studies the physical and mechanical characteristics of the filler. The chemical composition of the binder is presented. For dispersed reinforcement of fine concrete the influence of steel fibre on the strength characteristics of the mixture was studied. The characteristics of the fiber and the technology of obtaining a fiber-concrete mixture are presented. Studies showed the effectiveness of steel fibre with a percentage of 3% and a cement-sand ratio of 1/3.

2018 ◽  
Vol 931 ◽  
pp. 598-602 ◽  
Author(s):  
Sergey V. Klyuev ◽  
Tolya A. Khezhev ◽  
Yu.V. Pukharenko ◽  
A.V. Klyuev

The article proves the efficiency of the construction-based use of fibre concrete. The technique of high-quality fine-grained fibre concrete creation is presented. The chemical composition of the binder was studied and the physical and mechanical characteristics of the filler were revealed. 2 types of steel fibers were studied: anchor and in the form of a fir-tree. The conducted studies proved the effectiveness of dispersed reinforcement with steel fiber. It is established, that the usage of fiber in the form of a fir-tree the greatest increase of operational characteristics is reached.


2018 ◽  
Vol 14 (1) ◽  
pp. 126-135
Author(s):  
Reza Mirzaei ◽  
Naser Zarifmoghaddam

 Concrete as the most used material, is known as an integral part of construction. So far, many studies have been done in the field of improving the quality of concrete that most of them have examined change in concrete mix which is called concrete mix plan. However, the use of additives and also replacing commonly used materials in concrete with new materials always has been noteworthy. In this study, description of tests that have been done on fiber reinforced concrete will be discussed. Also, the condition of concrete mix plan will be discussed. Comparison between results of the tests showed that Forta reinforced concretes have more compressive, flexural and tensile strength and modulus of elasticity than normal and ordinary concretes.Journal of the Institute of Engineering, 2018, 14(1): 126-135 


2013 ◽  
Vol 834-836 ◽  
pp. 726-729
Author(s):  
Hai Liang Wang ◽  
Lei Yuan

This paper studies on the influence of impermeability in basalt fiber of C50 concrete, and the result was compared with the same dosage of polypropylene fiber. Experimental test show that after incorporating basalt fiber and polypropylene fiber concrete impermeability resistance were significantly improved, the impermeability of polypropylene fiber is superior to basalt fiber.


2018 ◽  
Vol 931 ◽  
pp. 603-607 ◽  
Author(s):  
Sergey V. Klyuev ◽  
Tolya A. Khezhev ◽  
Yu.V. Pukharenko ◽  
A.V. Klyuev

In the article the questions of application of the mining waste: dropout of quartzite sandstone crushing as filler in the fibre concrete production were considered. Composite binders based on cement and dropout of quartzite sandstone crushing were also developed. The effectiveness of composite binders’ usage consisting in improving the physical and mechanical characteristics and reduction of their prime cost compared to the cement with a slight increase in the complexity of their production was proved. The compositions of concrete dispersed reinforced with steel wave fiber and without it were developed. The efficiency of the use of dispersed reinforcement of fine-grained concrete is proved, which consists in improving the performance characteristics.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012062
Author(s):  
Mustaqqim Abdul Rahim ◽  
Lim Jiann Jonq ◽  
Afizah Ayob ◽  
Shamilah Anudai Anuar ◽  
Nor Faizah Bawadi ◽  
...  

Abstract The aim of the study is to study the physical and mechanical characteristics of Slurry Infiltrated Fiber Reinforced Concrete with fiber percentage volume of 5% and lower. For the testing of physical characteristics of the concrete, density test been conducted. For the testing of mechanical characteristics, compression test used to determine strength of concrete sample. The density of Slurry Infiltrated Fiber Reinforced Concrete increased when the usage of steel fiber percentage volume increases from 1% to 5%, nevertheless when compared to density of ordinary concrete, ordinary concrete is denser. For the significant of study, the mechanical properties of Slurry Infiltrated Fiber Reinforced Concrete, compressive strength increased when the fiber content increases from 1% to 5% percentage volume.


2019 ◽  
Vol 7 (3) ◽  
pp. 36-38
Author(s):  
Levon Mailyan ◽  
Aleksandr Mailyan

In the article, the authors present the main features and advantages of using fiber-reinforced concrete in the manufacture of various building structures. The features preventing the wider use of fiber-reinforced concrete are given. An analysis of the influence of various factors in the manufacture of structures on the mechanical properties of fiber-reinforced concrete made it possible to evaluate the differences in its operation in the stretched and compressed zone of structures. Recommendations are given on improving the mechanical characteristics of fiber-reinforced concrete and an analysis of the work of other researchers on this issue.


2019 ◽  
Vol 974 ◽  
pp. 14-19
Author(s):  
V.B. Babaev ◽  
Natalia I. Alfimova ◽  
Victoria V. Nelubova ◽  
L.N. Botsman

The development of modern construction technologies requires the development of efficient building materials with a unique property set and the improvement of existing ones. Fiber-reinforced concrete is one of the types of effective composites that meets the specified requirements, ensuring the structures operation reliability. The difficulty of achieving its maximum physical and mechanical characteristics is due to the complexity of the fiber equal distribution in the concrete matrix. Studies aimed at the optimization of the formulation and technological manufacture parameters of fiber-reinforced fine concrete, have revealed that from the perspective of obtaining products with optimal physical and mechanical characteristics, it is most feasible to introduce the agglutinant sand (cement + sand) of pre-prepared suspension from fibers, water of mixing and naphthalene formaldehyde plasticizer. Optimal dosages of input products were also revealed (basalt fiber, cement, plasticizer), which made it possible to create mixes of fine concrete and products based on it with class B25-B60 for compressive strength and Btb2,8-Btb6,0 for bending, frost resistance not less than F300.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Sign in / Sign up

Export Citation Format

Share Document