Effect of Die Pressure and Injection Speed on Rheo-Die Casting of A356-SiC Composite

2019 ◽  
Vol 947 ◽  
pp. 190-194
Author(s):  
Charinrat Potisawang ◽  
Sukangkana Talangkun

In this study, effect of die pressure and injection speed on hardness and microstructure in rheo-die casting of A356-SiC composite was investigated. The master A356-SiC composite was first produced by the mechanically stirred casting. SiC-15 micron particle was added 15 wt% in the molten A356. Master composites were then remelted at 610-615 °C. Then the slurry was transferred to a ladle and injected into the die. The Injection speeds were 3 and 4 m/s and die pressures were 11 and 12 MPa. Slurry was injected into a rod of 16×15.6×205 mm. Samples were then subjected to T6 treatment: solution treated at 540 °C for 1 h, water quenched then aged at 135 °C for 12 h. The result showed that hardness increased with increasing both speed and die pressure. At speed of 3 m/s and die pressure of 11 MPa which was an injection condition recommended for the molten A356, rheo-casted sample exhibited uneven filling at the end of the rod. When both speed and die pressure increased, samples were successfully and evenly filled the die cavities. Brinell hardness tests were performed in both as-rheo casted and T6 conditions. In as-rheo casted condition, the maximum hardness value of 82.16 HB obtained from a sample rheo-casted with speed of 4 m/s and die pressure of 12 MPa. A microstructure in cross section area of a rod revealed a uniform distribution of SiC particles in the A356 matrix. After T6, hardness value of composites increased approximately 15.6%.

2017 ◽  
Vol 899 ◽  
pp. 436-441 ◽  
Author(s):  
Adriano Gonçalves Reis ◽  
Danieli Aparecida Pereira Reis ◽  
Antônio Jorge Abdalla ◽  
Jorge Otubo ◽  
Antônio Augusto Couto ◽  
...  

The influence of plasma nitriding of a maraging 300 steel on mechanical properties at high temperature has been studied. Samples were tensile tested at 600°C in four conditions: solution treated (MAR-S), solution treated and aged (MAR-SA), solution treated and plasma nitrited (MAR-SP) and solution treated, aged and plasma nitrited (MAR-SAP). In the same sequence, the yield strength and ultimate tensile strength increased slightly respectively from 1073 to 1189 MPa and 1174 to 1301 MPa, an increase of about 10% due to plasma nitriding. All the samples presented similar values of elongation, around 18%, but the cross section area reduction decreased significantly by plasma nitriding from ~70% for MAR-S and MAR-SA to ~45% for MAR-SP and MAR-SAP, that is an decrease of 36% in average. This decrease is attributed to brittle fracture nucleated at 50 μm thick iron nitride layer. The inner fracture surface of the tensile tested specimens was predominantly ductile presenting characteristic microcavities.


2015 ◽  
Vol 2015 (7) ◽  
pp. 69-79
Author(s):  
Maciej Malicki ◽  
Bartosz Madejski

Abstract To prevent failure of machine components it is necessary to measure material damage generated in a component throughout its entire lifetime. Damage can be quantified by means of damage parameters. This paper considers the usefulness of hardness measurements to evaluate damage parameter in Inconel 718. Vickers hardness tests were performed on a specimen with a variable cross section area after tensile testing. The specimen’s geometry enabled the evaluation of damage parameter in respect of hardness measurements made on one individual specimen.


Author(s):  
Alexis Giauque ◽  
Maxime Huet ◽  
Franck Clero ◽  
Sébastien Ducruix ◽  
Franck Richecoeur

Indirect combustion noise originates from the acceleration of nonuniform temperature or high vorticity regions when convected through a nozzle or a turbine. In a recent contribution (Giauque et al., 2012, “Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles,” ASME J. Eng. Gas Turbies Power, 134(11), p. 111202) the authors have presented an analytical thermoacoustic model providing the indirect combustion noise generated by a subcritical nozzle when forced with entropy waves. This model explicitly takes into account the effect of the local changes in the cross-section area along the configuration of interest. In this article, the authors introduce this model into an optimization procedure in order to minimize or maximize the thermoacoustic noise emitted by arbitrarily shaped nozzles operating under subsonic conditions. Each component of the complete algorithm is described in detail. The evolution of the cross-section changes are introduced using Bezier's splines, which provide the necessary freedom to actually achieve arbitrary shapes. Bezier's polar coordinates constitute the parameters defining the geometry of a given individual nozzle. Starting from a population of nozzles of random shapes, it is shown that a specifically designed genetic optimization algorithm coupled with the analytical model converges at will toward a quieter or noisier population. As already described by Bloy (Bloy, 1979, “The Pressure Waves Produced by the Convection of Temperature Disturbances in High Subsonic Nozzle Flows,” J. Fluid Mech., 94(3), pp. 465–475), the results therefore confirm the significant dependence of the indirect combustion noise with respect to the shape of the nozzle, even when the operating regime is kept constant. It appears that the quietest nozzle profile evolves almost linearly along its converging and diverging sections, leading to a square evolution of the cross-section area. Providing insight into the underlying physical reason leading to the difference in the noise emission between two extreme individuals, the integral value of the source term of the equation describing the behavior of the acoustic pressure of the nozzle is considered. It is shown that its evolution with the frequency can be related to the global acoustic emission. Strong evidence suggest that the noise emission increases as the source term in the converging and diverging parts less compensate each other. The main result of this article is the definition and proposition of an acoustic emission factor, which can be used as a surrogate to the complex determination of the exact acoustic levels in the nozzle for the thermoacoustic shape optimization of nozzle flows. This acoustic emission factor, which is much faster to compute, only involves the knowledge of the evolution of the cross-section area and the inlet thermodynamic and velocity characteristics to be computed.


2013 ◽  
Vol 365-366 ◽  
pp. 1211-1216
Author(s):  
Fan Zhang ◽  
Peng Yun Song

The cross-section area of straight fin is often considered to be equal in the thermal analyses of straight fin, but sometimes it is unequalin actual situation. Taking a straight fin with two unequal cross-sectional areas as an example,an analytical method of heat conduction for unequal section straight fin is presented. The analytical expressions of temperature field and heat dissipating capacity about the fin,which has a smaller cross-section area near the fin base and a larger one, is obtained respectively. The calculation results of the unequal cross-section are fully consistent with the equal area one, so the method is proved right. The results show that the larger the cross section areanear the base,the better is the heat transfer, and the temperature at the base with larger cross-section area is lower than that with smaller cross-section area when the amount of heat is fixed.


1976 ◽  
Vol 30 (2) ◽  
pp. 179-183 ◽  
Author(s):  
R. S. Hickman ◽  
A. E. Kassem ◽  
L. H. Liang

The rotational temperature at pressures near 1 atm and at room temperature has been successfully measured using spectra obtained in an intracavity Raman scattering experiment. The accuracy of the method is sufficient to allow local temperature measurement of multicomponent gases with no disturbance in the temperature field. The advantage of the method lies in the fact that it does not require knowledge of the relative scattering cross-section area of the component gases.


Sign in / Sign up

Export Citation Format

Share Document