Carrier Flotation: State of the Art and its Potential for the Separation of Fine and Ultrafine Mineral Particles

2019 ◽  
Vol 959 ◽  
pp. 125-133 ◽  
Author(s):  
Kerstin Eckert ◽  
Edgar Schach ◽  
Gunter Gerbeth ◽  
Martin Rudolph

Critical raw materials (CRMs) are of primary importance for energy storage systems as needed for electromobility. Many mineral deposits which contain CRMs are low-grade ores. To liberate the CRMs, a grinding of the mineral ores to very fine sizes below 20 µm particle size is necessary. However, the present class of industrial flotation plants fail to extract such fine and ultrafine particles. To improve the recovery in fine particle flotation, techniques have been developed which attempt to agglomerate the fine valuable particles into larger aggregates which subsequently can be separated by established technologies such as froth flotation. Carrier flotation is one of these techniques. The present work reviews the state of the art of this technique for the recovery of fines and ultrafines.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 499
Author(s):  
Duong Huu Hoang ◽  
Doreen Ebert ◽  
Robert Möckel ◽  
Martin Rudolph

The depletion of ore deposits, the increasing demand for raw materials, the need to process low-grade, complex and finely disseminated ores, and the reprocessing of tailings are challenges especially for froth flotation separation technologies. Even though they are capable of handling relatively fine grain sizes, the flotation separation of very fine and ultrafine particles faces many problems still. Further, the flotation of low-contrast semi-soluble salt-type minerals with very similar surface properties, many complex interactions between minerals, reagents and dissolved species often result in poor selectivity. This study investigates the flotation beneficiation of ultrafine magnesite rich in dolomite from desliming, currently reported to the tailings. The paper especially focuses on the impact of the depressant sodium hexametaphosphate (SHMP) on the following: (i) the froth properties using dynamic froth analysis (DFA), (ii) the separation between magnesite and dolomite/calcite, and (iii) its effect on the entrainment. As a depressant/dispersant, SHMP has a beneficial impact on the flotation separation between magnesite and dolomite. However, there is a trade-off between grade and recovery, and as well as the dewatering process which needs to be considered. When the SHMP increases from 200 g/t to 700 g/t, the magnesite grade increases from 67% to 77%, while recovery decreases massively, from 80% to 40%. The open circuit with four cleaning stages obtained a concentrate assaying 77.5% magnesite at a recovery of 45.5%. The dolomite content in the concentrate is about 20%, where 80% of dolomite was removed and importantly 98% of the quartz was removed, with only 0.3% of the quartz in the final concentrate. Furthermore, the application of 1-hydroxyethylene-1,1-diphosphonic acid (HEDP) as a more environmentally friendly and low-cost alternative to SHMP is presented and discussed. Using only 350 g/t of HEDP can achieve a similar grade (76.3%), like 700 g/t of SHMP (76.9%), while obtaining a 17% higher magnesite recovery as compared to 700 g/t of SHMP. Interestingly, the proportion of hydrophilic quartz minerals ending up in the concentrate is lower for HEDP, with only 1.9% quartz at a recovery of 21.5% compared to the 2.7% of quartz at a recovery of 24.9% when using SHMP. The paper contributes in general to understanding the complexity of the depressant responses in froth flotation.


Author(s):  
Duong Huu Hoang ◽  
Doreen Ebert ◽  
Robert Möckel ◽  
Martin Rudolph

Depletion of ore deposits, increasing demand for raw materials, the need to process low-grade, complex and finely disseminated ores and the reprocessing of tailings are challenges, especially for froth flotation separation technologies. Even though capable of handling relatively fine grain sizes the flotation separation of very fine and ultrafine particles faces many problems still. Further, the flotation of low-contrast semi-soluble salt-type minerals with very similar surface properties, many complex interactions between minerals, reagents and dissolved species often result in poor selectivity. This study investigates the flotation beneficiation of ultrafine magnesite rich in dolomite from de-sliming, currently reported to the tailings. The paper especially focuses on the impact of the depressant sodium hexametaphosphate (SHMP) on: (i) the froth properties using dynamic froth analysis (DFA), (ii) the separation between magnesite and dolomite/calcite and (iii) its effect on the entrainment. Furthermore, the application of 1-hydroxyethylene-1,1-diphosphonic acid (HEDP) is a more environmentally friendly and low-cost alternative to SHMP is presented and discussed. The paper contributes to understanding on the complexity of depressant responses in froth flotation.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1437
Author(s):  
Katarzyna Ochromowicz ◽  
Kurt Aasly ◽  
Przemyslaw B. Kowalczuk

Polymetallic manganese nodules (PMN), cobalt-rich manganese crusts (CRC) and seafloor massive sulfides (SMS) have been identified as important resources of economically valuable metals and critical raw materials. The currently proposed mineral processing operations are based on metallurgical approaches applied for land resources. Thus far, significant endeavors have been carried out to describe the extraction of metals from PMN; however, to the best of the authors’ knowledge, it lacks a thorough review on recent developments in processing of CRC and SMS. This paper begins with an overview of each marine mineral. It is followed by a systematic review of common methods used for extraction of metals from marine mineral deposits. In this review, we update the information published so far in peer-reviewed and technical literature, and briefly provide the future perspectives for processing of marine mineral deposits.


Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 50
Author(s):  
Ewa Lewicka ◽  
Katarzyna Guzik ◽  
Krzysztof Galos

Sufficient supplies of critical raw materials (CRMs) for rapidly developing technologies, e.g., Li-ion batteries, wind turbines, photovoltaics, digitization, etc., have become one of the main economic challenges for the EU. Due to growing import dependency and associated risk of supply disruptions of these raw materials from third countries, there is a need to encourage their domestic production. This is an important starting point for EU value chains crucial for the sustainable economic growth of the whole Union. This contribution has evaluated the possibilities of CRMs supply from the EU’s primary sources. A three-step approach, including an assessment of CRMs’ importance for the EU’s economic growth, their significance in at least two of the three strategic industrial sectors (i.e., renewable energy, e-mobility, defense and aerospace), and their potential availability from EU mineral deposits, has been applied. Results of the analysis have shown that, of 29 critical mineral raw materials (according to the 2020 EC list), the potential to develop manufacturing from the Union mineral deposits exists for 11 CRMs, i.e., cobalt, graphite (natural), HREE, LREE, lithium, magnesium, niobium, PGMs, silicon metal, titanium, and tungsten, while some other CRMs, namely gallium, germanium, indium, and vanadium can be recovered as by-products. Measures to mitigate EU import dependency have been also proposed.


Resources ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 67
Author(s):  
Katarzyna Guzik ◽  
Krzysztof Galos ◽  
Alicja Kot-Niewiadomska ◽  
Toni Eerola ◽  
Pasi Eilu ◽  
...  

Major benefits and constraints related to mineral extraction within the EU have been identified on the examples of selected critical raw materials’ deposits. Analyzed case studies include the following ore deposits: Myszków Mo-W-Cu (Poland), Juomasuo Au-Co (Finland), S. Pedro das Águias W-Sn (Portugal), Penouta Nb-Ta-Sn (Spain), Norra Kärr REEs (Sweden) and Trælen graphite (Norway). They represent different stages of development, from the early/grassroot exploration stage, through advanced exploration and active mining, up to reopening of abandoned mines, and refer to different problems and constraints related to the possibility of exploitation commencement. The multi-criteria analysis of the cases has included geological and economic factors as well as environmental, land use, social acceptance and infrastructure factors. These factors, in terms of cost and benefit analysis, have been considered at three levels: local, country and EU levels. The analyzed cases indicated the major obstacles that occur in different stages of deposit development and need to be overcome in order to enable a new deposit exploitation commencement. These are environmental (Juomasuo and Myszków), spatial (Juomasuo) as well as social constraints (Norra Kärr, Juomasuo). In the analyzed cases, the most important constraints related to future deposit extraction occur primarily at a local level, while some important benefits are identified mainly at the country and the EU levels. These major benefits are related to securing long-term supplies for the national industries and strategically important EU industry sectors.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 340
Author(s):  
Mathew Dzingai ◽  
Malibongwe S. Manono ◽  
Kirsten C. Corin

Water scarcity necessitates the recycling of process water within mineral processing practices. This may however come with its disadvantages for unit operations such as froth flotation as this process is water intensive and sensitive to water chemistry. It is therefore important to monitor the water chemistry of the recycle stream of process water and any other water source to flotation. Monitoring the concentrations of the anions in recycled process water is therefore important to consider as these are speculated to impact flotation performance. Batch flotation tests were conducted using synthetically prepared plant water (3 SPW) with a TDS of 3069 mg/L as the baseline experiment. 3 SPW contained 528 mg/LNO3− and 720 mg/L SO42−, other anions and cations, and no S2O32−. Upon spiking 3 SPW with selected anions, viz, NO3−, SO42− and S2O32−, it was noted that NO3− and SO42− exhibited threshold concentrations while S2O32− did not show a threshold concentration for both copper and nickel grade. Spiking 3 SPW with 352 mg/L more of NO3− to a total 880 mg/L NO3− concentration resulted in the highest copper and nickel grade compared to 3 SPW while increasing the S2O32− from 60 to 78 mg/L increased nickel and copper grade. 720 to 1200 mg/L SO42− and 528 to 880 mg/L NO3− were deemed the concentration boundaries within which lies the threshold concentration above which flotation performance declines with respect to metal grades, while for S2O32− the threshold concentration lies outside the range considered for this study. Anion distribution between the pulp and the froth did not seem to impact the recovery of copper or nickel. Notably, the correlation between the concentrate grades and anion distribution between the froth and the pulp seemed to be ion dependent.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4312
Author(s):  
Marzena Smol

Circular economy (CE) is an economic model, in which raw materials remain in circulation as long as possible and the generation of waste is minimized. In the fertilizer sector, waste rich in nutrients should be directed to agriculture purposes. This paper presents an analysis of recommended directions for the use of nutrient-rich waste in fertilizer sector and an evaluation of possible interest in this kind of fertilizer by a selected group of end-users (nurseries). The scope of research includes the state-of-the-art analysis on circular aspects and recommended directions in the CE implementation in the fertilizer sector (with focus on sewage-based waste), and survey analysis on the potential interest of nurseries in the use of waste-based fertilizers in Poland. There are more and more recommendations for the use of waste for agriculture purposes at European and national levels. The waste-based products have to meet certain requirements in order to put such products on the marker. Nurserymen are interested in contributing to the process of transformation towards the CE model in Poland; however, they are not fully convinced due to a lack of experience in the use of waste-based products and a lack of social acceptance and health risk in this regard. Further actions to build the social acceptance of waste-based fertilizers, and the education of end-users themselves in their application is required.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1826
Author(s):  
Mihaela Girtan ◽  
Antje Wittenberg ◽  
Maria Luisa Grilli ◽  
Daniel P. S. de Oliveira ◽  
Chiara Giosuè ◽  
...  

This editorial reports on a thorough analysis of the abundance and scarcity distribution of chemical elements and the minerals they form in the Earth, Sun, and Universe in connection with their number of neutrons and binding energy per nucleon. On one hand, understanding the elements’ formation and their specific properties related to their electronic and nucleonic structure may lead to understanding whether future solutions to replace certain elements or materials for specific technical applications are realistic. On the other hand, finding solutions to the critical availability of some of these elements is an urgent need. Even the analysis of the availability of scarce minerals from European Union sources leads to the suggestion that a wide-ranging approach is essential. These two fundamental assumptions represent also the logical approach that led the European Commission to ask for a multi-disciplinary effort from the scientific community to tackle the challenge of Critical Raw Materials. This editorial is also the story of one of the first fulcrum around which a wide network of material scientists gathered thanks to the support of the funding organization for research and innovation networks, COST (European Cooperation in Science and Technology).


2015 ◽  
Vol 105 ◽  
pp. 1178-1204 ◽  
Author(s):  
M.S. Naghavi ◽  
K.S. Ong ◽  
M. Mehrali ◽  
I.A. Badruddin ◽  
H.S.C. Metselaar

2012 ◽  
Vol 174-177 ◽  
pp. 751-756
Author(s):  
Zi Fang Xu ◽  
Ming Xu Zhang ◽  
Jin Hua Li

In order to notably improve the mechanical properties and durability of low-grade cement-based material, superfine silica fume was used to modify the cement-based composite based on special perfomance and effects of nano powder. The mechanical performance and durability were investigated.Then the phase compositions,microstructure and morphologies of as-received cement-based composite were studied by X-ray Diffractometer、TGA-DTA and SEM. The results show that: the best formula of raw materials is 1:1:0.025:0.015, and hydration can be accelerated and increasing of hydration products is observed after modification. In the hardened cement matrix, microstructure is very compacted and C-S-H gel forms densed structure, so the structure defect is notably reduced. This means that both strength and durability of cement-based composite are notably improved by the addition of superfine silica fume.


Sign in / Sign up

Export Citation Format

Share Document