A Preliminary Study on the Effect of Pandanus amaryllifolius Extract as Green Stabilizer to the Growth of Nanostructured ZnO

2020 ◽  
Vol 990 ◽  
pp. 277-282
Author(s):  
Rabiatuladawiyah Md Akhir ◽  
Siti Zulaikha Umbaidilah ◽  
Nurul Afaah Abdullah ◽  
Mohamad Rusop Mahmood ◽  
Zuraida Khusaimi

Nanostructured zinc oxide (ZnO) were successfully prepared by using phyto assisted solution immersion process. ZnO were grown on a glass substrate coated with ZnO nanoparticle thin-film as seed layer at annealing temperature of 450°C. The fabricated nanostructured ZnO exhibit absorption at ∼375 nm as revealed from the UV-visible absorption spectrum, and it is comparable with ZnO nanostructured synthesized from hexamethylenetetramine (HMTA). X-ray diffraction (XRD) measurement revealed a sharp peak corresponding to the hexagonal wurtzite structure of nanostructured ZnO. Field emission scanning electron microscopy (FESEM) showed average size of ZnO at 24.15 nm slightly smaller compared to synthesized from HMTA; 30.54 nm. It should also be highlighted that the needs of using this alternative green method are due to the advantages of low working temperature and cost-effective, and with the least possible damage to the environment.

2019 ◽  
Vol 19 (2) ◽  
pp. 422
Author(s):  
Siham Lhimr ◽  
Saidati Bouhlassa ◽  
Saidati Bouhlassa ◽  
Saidati Bouhlassa ◽  
Bouchaib Ammary ◽  
...  

In this paper we study the effects of different molar ratio R of Zn2+ to OH– (R= nOH–/nZn(II) of the precursor was investigated by varying the amount of NaOH. Samples have been synthesized by the colloidal method at room temperature using (ZnCl2), citric acid (C6H8O9·H2O) and sodium hydroxide (NaOH). The formation of ZnO/C composite was characterized by The X-ray diffraction patterns indicated a high crystallinity and nanocrystalline size of ZnO with hexagonal wurtzite structure. The morphologies of the particles have been studied with a scanning electronic microscopy (SEM). The existence of carbon into the composite was detected by FTIR and EDS. The optical band gap of various ZnO/C composite was calculated from UV-Visible absorption measurement varied in the range 3.301 to 3.282 eV according to R values.


2019 ◽  
Vol 34 (3) ◽  
pp. 242-250 ◽  
Author(s):  
J. Anike ◽  
R. Derbeshi ◽  
W. Wong-Ng ◽  
W. Liu ◽  
D. Windover ◽  
...  

Structural characterization and X-ray reference powder pattern determination have been conducted for the Co- and Zn-containing tridymite derivatives Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8). The bright blue series of Ba(Co1−xZnx)SiO4 crystallized in the hexagonal P63 space group (No. 173), with Z = 6. While the lattice parameter “a” decreases from 9.126 (2) Å to 9.10374(6) Å from x = 0.2 to 0.8, the lattice parameter “c” increases from 8.69477(12) Å to 8.72200(10) Å, respectively. Apparently, despite the similarity of ionic sizes of Zn2+ and Co2+, these opposing trends are due to the framework tetrahedral tilting of (ZnCo)O4. The lattice volume, V, remains comparable between 626.27 Å3 and 626.017 (7) Å3 from x = 0 to x = 0.8. UV-visible absorption spectrum measurements indicate the band gap of these two materials to be ≈3.3 and ≈3.5 eV, respectively, therefore potential UV photocatalytic materials. Reference powder X-ray diffraction patterns of these compounds have been submitted to be included in the Powder Diffraction File (PDF).


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Honghui Teng ◽  
Shukun Xu ◽  
Dandan Sun ◽  
Ying Zhang

Fe-doped TiO2nanotubes (Fe-TNTs) have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.


2012 ◽  
Vol 502 ◽  
pp. 164-168
Author(s):  
Ling Xu ◽  
Han Mei Hu ◽  
Hai Yan Xu

Novel mace-like (wolf-teeth clubs) CdS nanostructures were successfully prepared on a large scale using CdCl2•2.5H2O and NH2CSNH2 as starting materials through a convenient mixed-solvothermal route. The as-synthesized products were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. The experimental results reveal that the morphology of CdS products was greatly affected by the volume ratio of anhydrous ethanol and distilled water. The possible mechanism for the formation of mace-like CdS nanostructures is simply discussed.


2014 ◽  
Vol 1704 ◽  
Author(s):  
Sathiraju Annapurna ◽  
Yathapu Suresh ◽  
Bojja Sreedhar ◽  
Ganghishetti Bhikshamaiah ◽  
A.K. Singh

ABSTRACTCopper nanoparticles are synthesized successfully through chemical reduction of different copper salts stabilized by Ocimum Sanctum Leaf extract, a natural biopolymer. The resulting copper nanoparticles are characterized by using UV Visible Absorption Spectrometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Small Angle X-ray Scattering (SAXS) and Fourier Transform Infrared Spectroscopy (FTIR) experiments. Copper nanoparticles prepared display an absorption peak at around 558 nm. X-ray diffraction analysis shows that the particles are FCC crystalline. SEM and TEM display the formation of copper nanoparticles with an average size of 10 nm. The SAXS studies demonstrate the formation of spherical nanoparticles with bimodal size distribution. The FTIR spectrum analysis has confirmed the presence of functional groups of stabilizer Ocimum Sanctum leaf extract in capping the copper nanoparticles.


2020 ◽  
Vol 8 (6) ◽  
pp. 1535-1539

There is a great interest in the development of green protocols to avoid environmental and health hazards. In this research, the eco-friendly and cost-effective synthesis of gold nanoparticles (GNPs) has been achieved by the green method using ethanolic turmeric crude extract at pH 7. The bioac-tive compounds of turmeric crude extract are responsible for the reduction, capping and sta-bility of the GNPs. The characterization of GNPs was carried out by ultraviolet-visible (UV-vis) spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The UV-vis spectral study indicated the formation of GNPs with a surface plasmon resonance (SPR) band at 547 nm. FTIR analysis of turmeric crude extract and GNPs showed that phenolic groups reduced the gold ions. The FESEM analysis showed the polydisperse morphology of GNPs with average size of 26.6 nm±7.4 nm. The elemental composition determined by EDX re-vealed the presence of gold. The synthesized GNPs can be useful in a variety of applications involving medicine, cosmetics, environment and nutraceutical.


2021 ◽  
Author(s):  
Nejeh Hannachi ◽  
Thierry ROISNEL ◽  
Faouzi HLEL

Abstract A new non-centrosymmetricorganotin (IV) hybrid compoundC5H14N2 [SnCl6] 2H2O was determined by single crystal X-ray diffraction at 150(2) K. Its crystal structure was solved by single crystal X-ray diffraction reveling that compound crystallizes in the orthorhombic system with Pbca space group with the following lattice parameters: a = 12.1486 (15) Å, b= 15.4571 (17) Å, c = 16.7610 (18) Å with Z = 8. The bonding between inorganic and organic entities in the compounds is realized by hydrogen bonding O−H…O ,O−H…Cl , NH • • • Cl, N-H…Cl and O−H…Cl. Finally,UV-visible absorption measurements exhibit two absorption bands (226 nm and 262 nm).The optical band gap (Eg) is deduced to be 3.46 Ev.


2020 ◽  
Vol 170 ◽  
pp. 01018
Author(s):  
Nishigandh Pande ◽  
Adinath Jambhale ◽  
Dipika Jaspal ◽  
Jalinder Ambekar ◽  
Himanshu Patil

The synthesis of cost-effective and safe polymeric nanocomposite materials has been a subject of interest and study for material science researchers. Poly (N-Methyl Aniline) –Li nanocomposite has been synthesized by a one-pot in-situ method and has been explored as an electrolyte in the battery. Poly (N-Methyl Aniline)-Li nanocomposite prepared, has been characterized by UV-visible, FTIR, FE-SEM, X-ray diffraction techniques. A mechanism of interaction of lithiumion with nitrogen at the imine site has been proposed. The charge-discharge process of poly (N-Methyl Aniline) –Li nanocomposite, when used in the battery, has been discussed.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gowri Manohari N ◽  
Mohanapriya N

In this present study, Iron Oxide nano particles were synthesized by using Green method. For this synthesis on Iron oxide, the leaf extract of piper betle was used as a reducing agent and FeCl3 as a precursor. Thus, they were characterized by XRD, SEM,EDX and FTIR. The parity of Fe2O3 nano particles was confirmed by EDX. The crystalline size of Iron Oxide nano particles was analyzed using X-ray Diffraction (XRD) spectrum. The functional groups are identified in Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the Iron Oxide Nano particles is found from Scanning Electron Microscopy (SEM). The optical properties are determined by using UV-Visible Spectroscopy. Thus, the so-formed nano particles were Fe2O3.


2019 ◽  
Vol 14 (11) ◽  
pp. 1523-1531
Author(s):  
Manjit Kaur ◽  
Rakesh Dogra ◽  
Narinder Arora ◽  
Navjeet Sharma ◽  
Rajesh Kumar

AC transport properties and dielectric response of sandwich geometry (Ag/CuPc/Ag) of CuPc(CuPc) thin films deposited using thermal evaporation technique have been studied within frequency range 1 Hz–10 KHz and in temperature range 303–383 K. Scanning electron microscope (SEM) investigations of these films reveal fiber like morphology. Crystalline natures of CuPc films have been characterized using X-ray diffraction for different temperatures. The molecular orientations in films for different substrate temperatures have been confirmed by Raman spectroscopy. The optical band gaps calculated from the UV–Visible absorption spectra is found to lie in the range 3.01–3.15 eV. Electrical conductivity of CuPc films increases with increase of temperature. The hole mobility values of CuPc films at different temperatures have been calculated using negative differential susceptance (–ΔB) technique. Both capacitance and dielectric constant have been found to decrease with the increase of frequency and temperature.


Sign in / Sign up

Export Citation Format

Share Document