Synthesis of Environment Friendly Manganese Doped Metal Oxide Nanoparticles for the Bio sensor Applications

2021 ◽  
Vol 10 (3) ◽  
pp. 09-15
Author(s):  
Priyadharshini Muthukumaravel ◽  
Rajesh Pattulingam ◽  
Syed Illiyas Syed Maqbool ◽  
Hariharan Venkatesan ◽  
Ezhil Inban Manimaran

The present work focuses the synthesis of Manganese(Mn) doped Fe2O3 nanoparticles via an environmental friendly method which find their suitability for biosensors applications using the extraction of Nyctanthes arbor tristis seed for the first time. The synthesized Mn (~2, 3 & 5 wt. %) doped Fe2O3 were characterized by Powder X-ray diffraction (XRD), Field emission Scanning electron microscopy (FE-SEM), Cyclic voltammeter, Infrared and UV visible spectroscopic studies. The powder X-ray diffraction analysis exposed the phase formation and α - Fe2O3 nanoparticles in the case of annealed sample. Also, interesting secondary phase formation observed in the case of Mn 5wt. % doped samples. The optical properties of Mn (~2, 3 & 5 wt. %) doped Fe2O3 samples was determined by utilizing UV – Visible spectroscopic technique and the corresponding band gap energy was found to be 5.83 eV. The chemical bonds as well as functional groups in the compound were confirmed by the analysis of FT-IR spectrum. The morphology of the prepared samples were observed at micro level using FE-SEM analysis.Cyclic voltammeter was used to find the suitability of the prepared samples for proposed bio sensor applications.  

2021 ◽  
Vol 33 (10) ◽  
pp. 2287-2292
Author(s):  
K. Vijayashree ◽  
K. Sheshappa Rai

Insertion of metal-oxide nanoparticles to polymers stipulate the modification of physical properties of polymers over and above the accomplishment of new features in the polymer matrix. In the current study, an attempt was made to disperse the CuO nanoparticles in the polyvinyl alcohol and hydroxypropyl methylcellulose (HPMC) blend to investigate the structural, mechanical and optical properties of the nanocomposite. Blend was prepared in different ratios using PVA and HPMC, viz. 25:50, 50:50 and 75:25 wt%. The CuO nanoparticles were added to the 75:25 PVA:HPMC blend in different percentage like 0.5,1 and 1.5%. The polymer with and without CuO incorporation were subjected to X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-visible spectral analyses and mechanical strength, etc. The results revealed that the incorporation of the CuO nanoparticles enhanced the structural and mechanical properties of the polymer by forming successful nanocomposite.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2012 ◽  
Vol 620 ◽  
pp. 295-298
Author(s):  
I. Norfadhilah ◽  
Mohamad Hasmaliza ◽  
Zainal Arifin Ahmad

ndialite or α-cordierite was synthesized by glass crystallization method. Effect of different sintering profile; single stage sintering (1s) and two stages sintering (2s) on phase formation was determined via x-ray diffraction (XRD) analysis using rietvield method of HighScore Plus software. It has been found that 1s produce 85 % of α-cordierite with 15 % anorthite as secondary phase while, α-cordierite appeared about 68.6 % with 24.3 % anorthite and 7.1 % forsterite as secondary phase using 2s sintering profile.


Author(s):  
Emy Rose Peter ◽  
Jismon Sebastian ◽  
Swapna S. Nair

Lead in our body is toxic and hazardous. Here leadfree Cobalt ferrite and Barium Titanate inks have been prepared and fabricated. The prepared inks remained stable without agglomeration or condensation during preservation. Cobalt Ferrite and Barium Titanate Nano inks have been characterized using X-ray diffraction method and UV Visible Spectroscopy. By the analysis of X-ray diffraction (XRD), the resultant inks were confirmed to be of pure Cobalt Ferrite and Barium Titanate powders with cubic structure and tetragonal structure respectively. Lattice parameters and grain size have been determined by X-ray diffraction method. UV Visible Spectroscopy analysis has been done to obtain the band gap energy of the prepared inks. The preparation and characterization of Cobalt Ferrite and Barium Titanate Nano inks are comprehensively demonstrated in this paper.


2012 ◽  
Vol 584 ◽  
pp. 207-211 ◽  
Author(s):  
Vijaya Chikkaveeraiah Veeranna Gowda ◽  
K.R Sardar Pasha ◽  
M. Sudhakar Reddy ◽  
C. Narayana Reddy

Abstract. Neodymium doped sodium bismuth borate (Na2O-Bi2O3-B2O3) glasses were prepared by melt quenching method. Amorphous nature of the glass is confirmed through the X-ray diffraction study. Density of the investigated glasses increases systematically with Bi2O3 concentration. Glass transition temperature decrease slightly with increase of Bi2O3 content and could be due to increase in the number of weaker Bi-O linkages by stronger Nd-O linkages. Fourier Transform - Infrared (FTIR) spectroscopy has been carried out. The IR spectra of the glasses reveal that the strong network consisting of diborate units and is unaffected by the variation of Nd3+ concentration. UV-Visible absorption studies have been performed on these glasses to examine the optical spectra and the optical band gap energy has been calculated. The intensity of the absorption band increases with the increase of Nd3+ concentration. This is due to the formation of non-bridging oxygens (NBO’s) in the structure.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2017 ◽  
Vol 72 (7) ◽  
pp. 461-474 ◽  
Author(s):  
Saddam Weheabby ◽  
Mohammad A. Abdulmalic ◽  
Evgeny A. Kataev ◽  
Tatiana A. Shumilova ◽  
Tobias Rüffer

AbstractPoly(cyclic) oxamates represent novel and potentially multidentate ligands for coordination chemistry. To obtain them, the treatment of 2-nitroaniline with two equivalents of oxalyl chloride afforded N,N′-bis(2-nitrophenyl)oxalamide (1), and by reduction of 1 with [NH4][CO2H] and Pd/C, N,N′-bis(2-aminophenyl)oxalamide (2, bapoxH6) was synthesized. After the addition of an equimolar amount of oxalyl chloride to a THF solution of 2 and aqueous work-up the 24-membered macrocycle H8L2 was obtained. In analogues experiments, the addition of ethoxalyl and oxalyl chloride to 2 afforded the 36-membered macrocycle H12L3. The addition of Cu(OAc)2·H2O and NaOH to 2 gave rise to the formation of [Cu2(bapoxH4)(OAc)2] (4). The identities of 1, 2 and H8L2 were determined by elemental analysis, IR, NMR spectroscopic studies and by mass spectrometry. The solid state structures of H8L2, H12L3 and 4 have been determined by single-crystal X-ray diffraction studies. Macrocycle H12L3 forms chains through intermolecular hydrogen bonds, while packing of 4 consists of layers held by intermolecular dispersion and hydrogen bond interactions. 24-mer H8L2 forms a cavity with a diameter of about 7.5 Å corresponding to an accessible volume of about 120 Å3 according to the well-established 55% solution and was found to bind bromide and iodide anions selectively.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


Sign in / Sign up

Export Citation Format

Share Document