In Situ Observation on the Deformation Behavior of Primary α-Ti in a Textured Ti-6Al-4V

2020 ◽  
Vol 993 ◽  
pp. 365-373
Author(s):  
Yun Xi Liu ◽  
Wei Chen ◽  
Zhi Qiang Li ◽  
Liang Liang Liu ◽  
Dong Liu

The tensile deformation process and dislocation behavior of primary α-Ti of Ti-6Al-4V were studied by the in-situ tensile test combined with EBSD (electron backscatter diffraction). The initiation, evolution and distribution of dislocation slips at different strains were discussed. The results showed that the microtexture of the material had a significant influence on slip behavior. Typically, basal and prismatic <a> slips initiated first, but the dominant slip type was related to the local texture characteristics. Sometimes, the basal and prismatic <a> slips could still initiate when their Schmid factors were relatively low, while the pyramidal slips usually need a higher Schmid factor to initiate. With the increase of strain, the second slip system inside one grain was activated to accommodate the plastic deformation. When the deformation was localized in a specific microtextured region, basal <a> slips were dominant, but eventually the crack initiated from the <c+a> slip bands inside the grain.

2015 ◽  
Vol 21 (4) ◽  
pp. 969-984 ◽  
Author(s):  
Thomas E. Buchheit ◽  
Jay D. Carroll ◽  
Blythe G. Clark ◽  
Brad L. Boyce

AbstractUsing an in situ load frame within a scanning electron microscope, a microstructural section on the surface of an annealed tantalum (Ta) polycrystalline specimen was mapped at successive tensile strain intervals, up to ~20% strain, using electron backscatter diffraction. A grain identification and correlation technique was developed for characterizing the evolving microstructure during loading. Presenting the correlated results builds on the reference orientation deviation (ROD) map concept where individual orientation measurements within a grain are compared with a reference orientation associated with that grain. In this case, individual orientation measurements in a deformed grain are measured relative to a reference orientation derived from the undeformed (initial) configuration rather than the current deformed configuration as has been done for previous ROD schemes. Using this technique helps reveal the evolution of crystallographic orientation gradients and development of deformation-induced substructure within grains. Although overall crystallographic texture evolved slowly during deformation, orientation spread within grains developed quickly. In some locations, misorientation relative to the original orientation of a grain exceeded 20° by 15% strain. The largest orientation changes often appeared near grain boundaries suggesting that these regions were preferred locations for the initial development of subgrains.


2004 ◽  
Vol 467-470 ◽  
pp. 935-940 ◽  
Author(s):  
Sandra Piazolo ◽  
Vera G. Sursaeva ◽  
David J. Prior

First results from grain growth experiments in a columnar structured Al foil show several interesting features: (a) the grain size distribution remains heterogeneous even after up to 300 min. annealing and (b) the Von Neumann-Mullins relation is not always satisfied. To clarify the underlying reasons for these features, in-situ heating experiments within a Scanning Electron Microscope (SEM) were combined with detailed Electron Backscatter Diffraction (EBSD) analysis. These show that the movement of boundaries can be strongly heterogeneous. For example, the complete replacement of one grain by a neighbouring grain without significant change of the surrounding grain boundary topology is frequently seen. Experiments show that grain boundary energy and/or mobility are anisotropic both with respect to misorientation and orientation of grain boundary plane. Low energy and/or mobility boundaries are commonly low angle boundaries, twin boundaries and boundaries that form traces to a low index plane of at least one of the adjacent grains. As a consequence the Von Neumann-Mullins relation is not always satisfied.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3608 ◽  
Author(s):  
Jae-Hyung Cho ◽  
Sang-Ho Han ◽  
Geon Young Lee

Texture and microstructure evolution of ingot and twin-roll casted Mg–Al–Mn magnesium sheets were examined during deep drawing at elevated temperatures. The twin-roll casted sheets possessed smaller grain sizes and weaker basal intensity levels than the ingot-casted sheets. The strength and elongation at room temperature for the twin-roll casted sheets were greater than those of the ingot-casted sheets. At elevated temperatures, the ingot-casted sheets showed better elongation than the twin-roll casted sheets. Different size and density of precipitates were examined using transmission electron microscopy (TEM) for both ingot-casted and twin-roll-casted sheets. The deep drawing process was also carried out at various working temperatures and deformation rates, 225 °C to 350 °C and 30 mm/min to 50 mm/min, respectively. The middle wall part of cups were mainly tensile deformation, and the lower bent regions of drawn cups were most thinned region. Overall, the ingot-casted sheets revealed better deep drawability than the twin-roll casted sheets. Microstructure and texture evolution of the top, middle and lower parts of drawn cups were investigated using electron backscatter diffraction. Increased deformation rate is important to activate tensile twins both near the bent and flange areas. Ingot casted sheets revealed more tensile twins than twin-roll casted sheets. Increased working temperature is important to activate non-basal slips and produce the DRXed grain structure in the flange. Dynamic recrystallization were frequently found in the top flanges of the cups. Both tensile twins and non-basal slips contributed to occurrence of the dynamic recrystallization in the flange.


Microscopy ◽  
2020 ◽  
Author(s):  
Kaneaki Tsuzazki ◽  
Motomichi Koyama ◽  
Ryosuke Sasaki ◽  
Keiichiro Nakafuji ◽  
Kazushi Oie ◽  
...  

Abstract Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.


2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
D Prior ◽  
M Bestmann ◽  
S Piazolo ◽  
NC Seaton ◽  
DJ Tatham ◽  
...  

2013 ◽  
Vol 738-739 ◽  
pp. 77-81 ◽  
Author(s):  
Anja Weidner ◽  
Harry Berek ◽  
Christian Segel ◽  
Christos G. Aneziris ◽  
Horst Biermann

Composite material on the basis of a TRIP (transformation induced plasticity) steel with zirconia particles as reinforcement was produced by powder metallurgical technology and conventional sinter process. The goal of such type of material is to obtain exceptional mechanical properties like high deformation energy absorption due to the combination of martensitic phase transformations both in steel and ceramic. The steel matrix was made of the commercial steel AISI 304, which shows a deformation-induced martensitic phase transformation from the austenitic phase (fcc) into the α’-martensite (bcc). The zirconia particles were partially stabilized with MgO and show a stress-assisted martensitic phase transformation from the tetragonal to the monocline phase. Flat specimens were tensile deformed in-situ in a scanning electron microscope in order to follow the damage behaviour of the material. Some zirconia particles were characterized before and after tensile testing both by backscattered electron contrast as well as by electron backscatter diffraction (EBSD) in combination with energy dispersive X-ray spectroscopy (EDS).


Sign in / Sign up

Export Citation Format

Share Document