Modeling of the Effects of Cyclic Voltammetry (CV) Using Fuzzy Logic with Different Membership Functions for Proton Exchange Membrane Fuel Cell (PEM) with Polyvinyl Alcohol/Nano Silver (PVA/Ag)

2017 ◽  
Vol 16 ◽  
pp. 67-72
Author(s):  
Ali Serhat Ersoyoglu ◽  
Sadik Ata ◽  
Kevser Dincer ◽  
Gürol Önal ◽  
Yusuf Yilmaz

In this study, the effects of cyclic voltammetry (CV) has been modeled with Rule-based mamdani-type fuzzy (RBMTF), by using experimental data for proton exchange membrane fuel cell with PVA/AG. In the system developed, RBMTF apply input parameters are CV, scan rate and time, output parameters are current density and voltage. 12300 values for experimental study also obtained with RBMTF. Membership functions (MFs) are the building blocks of fuzzy set theory, i.e., fuzziness in a fuzzy set is determined by its MF. Accordingly, the shapes of MFs are important for a particular problem since they effect on a fuzzy inference system. They may have different shapes like triangular, trapezoidal, Gaussian, etc. When the results obtained from RBMTF and statistical analyses of experimental data have been compared, it has been determined that the two groups of data are coherent, and that there is not a significant difference between them. As a result, this study indicates that RBMTF with different membership functions can be safely used for CV.

Author(s):  
Lin Wang ◽  
Attila Husar ◽  
Tianhong Zhou ◽  
Hongtan Liu

The effects of different parameters on the performances of proton exchange membrane fuel cells were studied experimentally. Experiments with different fuel cell temperatures, humidification temperatures and backpressures of reactant gases have been carried out. Polarization curves from experimental data are presented and the effects of the parameters on the performance of the PEM fuel cell are discussed. The experimental data obtained in this work are used to validate our 3-D mathematical model. It is found that modeling results agree well with our experimental data.


Author(s):  
Arnab Roy ◽  
Ugur Pasaogullari ◽  
Michael W. Renfro ◽  
Baki M. Cetegen

Transient experimental validation and investigation of the effect of diffusivity of porous layers on the dynamic water vapor partial pressure profiles of a proton exchange membrane fuel cell (PEMFC) during load change is presented. A three dimensional, isothermal, transient, single-phase computational fluid dynamics based model is developed to validate with the water partial pressure profiles experimentally measured during start-up conditions earlier in a 50 cm2 PEMFC having a single serpentine flow path in counter-flow configuration. The fluid flow within the serpentine channel geometry is simulated using a straight channel fuel cell model with total channel length equivalent to the stretched length of the entire serpentine path incorporating the same amount of pressure drop from inlet to outlet. The model equations are solved using a multi-domain approach incorporating water transport through membrane and multi-component species transport through porous diffusion layer. The transient model predictions of water partial pressure profiles of anode and cathode channels are found to be in good agreement within the error bounds of the experimental results. This validation is also indicative of the two different time scales i.e. initial anode dip due to electro-osmotic drag and recovery due to back diffusion from cathode to anode. Steady state model predictions are compared to check for accuracy simultaneously. The model also delineates the significance of effective diffusivity of porous Gas Diffusion Layers (GDL) and Catalyst Layers (CL) on transient characteristics. In order to come up with best parameters to validate with experimental data, a sensitivity analysis with parametric variations of effective porosity of GDL and CL is performed with a single experimental data set and then applied to the remaining sets. Results show that the CL diffusivity has a more pronounced effect on water accumulation as well as on temporal water transport than GDL diffusivity. The numerical simulation thus provides a validated set of quantitative model parameters along with an insight to the underlying physics of water transport phenomena in a PEMFC.


Author(s):  
Khaled Mammar ◽  
Slimane Laribi

This work defines and implements a technique to predict water activity in proton exchange membrane fuel cell. This technique is based on the electrochemical impedance spectroscopy (EIS) as sensor and adaptive neuro-fuzzy inference system (ANFIS) as estimator. For this purpose, a proton exchange membrane fuel cell (PEMFC) model has been proposed to study the performances of the fuel cell for different operating conditions where the simulation model for water activity behavior is in the proposed structure. The technique based on ANFIS predicts the PEM fuel cell relative humidity (RH) from the EIS. For creation of ANFIS training and checking database, a new method based on factorial design of experimental is used. To check the proposed technique, the ANFIS estimator will be compared with the output humidity relative observation.


2020 ◽  
Vol 12 (12) ◽  
pp. 4952 ◽  
Author(s):  
Tabbi Wilberforce ◽  
Abdul Ghani Olabi

This investigation explored the performance of PEMFC for varying ambient conditions with the aid of an adaptive neuro-fuzzy inference system. The experimental data obtained from the laboratory were initially trained using both the input and output parameters. The model that was trained was then evaluated using an independent variable. The training and testing of the model were then utilized in the prediction of the cell-characteristic performance. The model exhibited a perfect correlation between the predicted and experimental data, and this stipulates that ANFIS can predict characteristic behavior of fuel cell performance with very high accuracy.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3532 ◽  
Author(s):  
Miguel Ángel López Zavala ◽  
Omar Israel González Peña ◽  
Héctor Cabral Ruelas ◽  
Cristina Delgado Mena ◽  
Mokhtar Guizani

Cyclic voltammetry (CV) was used in this work to describe the electrochemical behavior of a dual-chamber microbial fuel cell (MFC). The system performance was evaluated under vacuum and non-pressurized conditions, different reaction times, two sweep potentials, 25 and 50 mVs−1 and under different analyte solutions, such as distilled water and domestic wastewater. CV experiments were conducted by using a potentiostat with three different configurations to collect the measurements. A dual-chamber MFC system was equipped with a DupontTM Nafion® 117 proton exchange membrane (PEM), graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) and an external electric circuit with a 100-Ω resistor. An electrolyte (0.1 M HCl, pH ≈ 1.8) was used in the cathode chamber. It was found that the proton exchange membrane plays a major role on the electrochemical behavior of the MFC when CV measurements allow observing the conductivity performance in the MFC in the absence of a reference electrode; under this potentiostat setting, less current density values are obtained on the scanned window potentials. Therefore, potentiostat setting is essential to obtain information in complex electrochemical processes present in biological systems, such as it is the case in the MFCs. Results of the study showed that wastewater constituents and the biomass suspended or attached (biofilm) over the electrode limited the electron charge transfer through the interface electrode-biofilm-liquor. This limitation can be overcome by: (i) Enhancing the conductivity of the liquor, which is a reduction of the ohmic drop, (ii) reducing the activation losses by a better catalysis, and (iii) by limiting the diffusional gradients in the bulk liquor, for instance, by forced convection. The use of the electrolyte (0.1 M HCl, pH ≈ 1.8) and its diffusion from the cathode to the anode chamber reduces the resistance to the flow of ions through the PEM and the flow of electrons through the anodic and cathodic electrolytes. Also reduces the activation losses during the electron transfer from the substrate to the electrode surface due to the electrode catalysis improvement. On the other hand, vacuum also demonstrated that it enhances the electrochemical performance of the dual-chamber MFC due to the fact that higher current densities in the system are favored.


Author(s):  
Sang-Gyu Kang ◽  
Han-Sang Kim ◽  
Taehun Ha ◽  
Kyoungdoug Min ◽  
Fabian Mueller ◽  
...  

A quasi three-dimensional dynamic model of a proton exchange membrane fuel cell (PEMFC) has been developed and evaluated by comparison to experimental data. A single PEMFC cell is discretized into 245 control volumes in three dimensions to resolves local voltage response, current generation, species mole fractions, temperature, and membrane hydration spatially in the PEMFC. The model can further simulate transients in electrical load, inlet flow conditions, ambient conditions, and/or other parameters to provide insight into the local dynamic performance of a PEMFC. The quasi three-dimensional model has been validated against an experimental single cell. To compare the model, polarization constants were tuned to match one experimental operating point of the fuel cell. With this tuning, the model is shown to predict well the voltage current (V-I) behavior for the full range of cell operating current. Further, model comparison to an instantaneous increase in current indicates that the model can predict the transient electrochemical response of the PEMFC. This suggests such a model can be utilized for PEMFC system development, transient analysis of a PEMFC in general, as well as transient control design.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2117
Author(s):  
Nikita Faddeev ◽  
Evgeny Anisimov ◽  
Maxim Belichenko ◽  
Alexandra Kuriganova ◽  
Nina Smirnova

Power supply systems based on air-cooled proton exchange membrane fuel cell (PEMFC) stacks are becoming more popular as power sources for mobile applications. We try to create a PEMFC model that allows for predicting the PEMFC operation in various climatic conditions. A total of two models were developed and used: the membrane electrode assemble (MEA) model and the PEMFC stack model. The developed MEA model allows to determine the influence of external factors (temperature) on the PEMFC power density. The data obtained using the developed model correlate with experimental data at low ambient temperatures (10–30 °C). The difference between the simulation and experimental data is less than 10%. However, the accuracy of the model during PEMFC operation at high (>30 °C) and negative ambient temperatures remains in doubt and requires improvement. The obtained data were integrated into the air-cooled PEMFC stack model. Data of the temperature fields distribution will help to manage the processes in the PEMFC stack. The maximum temperature is slightly above 60 °C, which corresponds to the optimal conditions for the operation of the stack. The temperature gradient across the longitudinal section is very low (<20 °C), which is a positive factor for the chemical reaction. However, the temperature gradient observed across the cross section of the PEMFC stack is 30 °C. The data obtained will help to optimize the mass-dimensional characteristics of air-cooled proton exchange membrane fuel cell and increase their performance. The synergetic effect between the MEA model and the PEMFC stack model can be successfully used in the selection of materials and the development of a thermoregulation system in the PEMFC stack.


Sign in / Sign up

Export Citation Format

Share Document