Beta Backscattering and Gamma Radiation Absorption Characteristics of Carbon Nanoparticles Contained Concrete Composite

2017 ◽  
Vol 17 ◽  
pp. 31-36 ◽  
Author(s):  
B. Gopal Krishna ◽  
Pooja Prasad ◽  
Vibha Sahu ◽  
Jyoti Prabha Sahu ◽  
Akansha Agarwal

Concrete is a very important composite for making different building structures to absorb different levels of radiation. Nuclear power plants, nuclear research reactors, particle accelerators and linear accelerator in medical institution use concrete in building construction. Nanoparticles or nanocrystals have different properties than their bulk counterparts. The gamma radiation absorption characteristics and beta back scattering by nanoparticles is also different than their counterparts. In this paper, carbon nanoparticles are mixed in the concrete composite during its preparation. The concrete composite with carbon nanoparticles as admixture were analyzed to provide radiation protection. The gamma radiation absorption characteristics and beta back scattering in ordinary and carbon nanoparticles contained concretes have been studied by GM counter. The results show that using carbon nanoparticles as an admixture in the concrete is one of the solutions for gamma ray shielding and beta back scattering. Therefore, it is good to use carbon nanoparticles as admixtures in concrete composites for beta and gamma radiation scattering and absorption respectively.

Author(s):  
O.V. Banzak ◽  
O.V. Sieliykov ◽  
M.V. Olenev ◽  
S.V. Dobrovolskaya ◽  
O.I. Konovalenko

When considering methods of combating the illicit circulation of nuclear materials, it is necessary to detect trace amounts of materials, and in many cases not to seize them immediately, but to establish the place of storage, processing, routes of movement, etc. As a result, there is a new demand for isotope identification measurements to meet a wide range of different requirements. Measurements should be carried out in the field in a short time, when results need to be obtained within tens of seconds. The devices with which the personnel work should be small and low-background. Such requirements appear when working to identify cases of illegal trade in nuclear materials and radioactive sources, as well as when solving radiation protection problems and when handling radioactive devices and waste. In this work, new generation radiation sensors and measuring systems based on them have been created, which open up previously unknown possibilities in solving problems of nuclear fuel analysis, increasing the accuracy and efficiency of monitoring technological parameters and the state of protective barriers in nuclear power plants, and creating means for IAEA inspections. For the first time a portable digital gamma-ray spectrometer for radiation reconnaissance in the field was developed and created. Distinctive features of such devices are: The analysis showed that the required value of error due to energy dependence of the sensitivity can be achieved using, for example, Analog Devices 10-bit AD9411 ADCs with a sampling rate of 170 MHz. The number of quantization levels is determined by the requirement to measure the dose rate of gamma radiation with an energy of at least 10 keV. This minimum energy corresponds to the use of 10-bit ADCs. On the basis of the developed model, an ionizing radiation detector for dosimetry was created. Its fundamental difference from known devices is the use of CdZnTe crystals as a primary gamma-ray converter (sensor). The advantages of such a solution, proved by previous studies, made it possible to create a detector with: high resolution, no more than 40 keV; a wider dynamic range of values of the recorded radiation dose rate - from background to emergency operating modes of the reactor; lower value of the energy equivalent of noise.


2010 ◽  
Vol 117 (5) ◽  
pp. 812-816 ◽  
Author(s):  
S.J. Stanković ◽  
R.D. Ilić ◽  
K. Janković ◽  
D. Bojović ◽  
B. Lončar

2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1369-1378 ◽  
Author(s):  
Georg F. Schwarz ◽  
Ladislaus Rybach ◽  
Emile E. Klingelé

Airborne radiometric surveys are finding increasingly wider applications in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma‐ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose‐rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Gösgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.


Author(s):  
A. A. Soltanieh ◽  
J. Goshtasbi ◽  
A. R. Ghareh Chaie ◽  
V. Zarifian ◽  
Q. Kamali

Author(s):  
Amy Luan ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Bobby Sidhu ◽  
Abderrachid Zitouni

  Abstract: Due to the Fukushima Daiichi Nuclear power plant incident in March 2011, large quantities of contaminated water were released to the Pacific Ocean in Japan. The severity of contamination on the marine environment is unclear, therefore, the public is concerned with the possible internal radiation exposure from ingesting contaminated seafood products caught in the Pacific Ocean. This study was aimed to investigate the presence or absence of gamma radioactivity in commonly consumed seafood products from B.C. In total, ten different species of fish and three different species of shellfish were selected for analysis. For each species of fish, two samples were collected and each sample was from a different local seafood market. For each species of shellfish, ten samples were collected from three different sources. Using the portable GR-135 Plus gamma ray spectrometer, the samples were tested and analyzed for the presence of Fukushima radionuclides, particularly Cesium-137 (Cs-137) and Cesium- 134 (Cs-134).Based on the analyzed fish and shellfish, no gamma radiation was detected. The detector did not identify any gamma radiation over the normal background readings.  


Geophysics ◽  
1944 ◽  
Vol 9 (2) ◽  
pp. 180-216 ◽  
Author(s):  
W. L. Russell

Geiger counter determinations of the gamma ray intensity of 510 rock samples have been made to determine the average radioactivity and frequency distribution of radioactivities of the various types of sedimentary rocks. The results, expressed in units of gamma ray intensity, show that limestones, sandstones and dolomites are of relatively low radioactivity, shales much higher, and black bituminous shales highest of all. The new data on the gamma radiation of the sediments may be used to improve the interpretation of radioactivity logs and to determine the value of surface radioactivity surveys.


Geophysics ◽  
1987 ◽  
Vol 52 (11) ◽  
pp. 1557-1562 ◽  
Author(s):  
A. A. Green

A procedure for estimating background‐correction terms for the uranium channel of an airborne gamma‐ray survey has been developed. The residuals obtained from a multiple linear regression of flight‐line means for the uranium channel on the means for thorium and potassium are used to correct the uranium channel for each line. The procedure assumes that, were it not for these background errors, the uranium flight‐line means would be a linear function of the means for potassium and thorium. It also assumes that the background correction is the same for the whole of each line. In spite of these limitations, the method produces good background estimates consistent with those found by more sophisticated methods.


Sign in / Sign up

Export Citation Format

Share Document