Erosion Resistance and Its Mechanism for Flame-Hardened 12Cr Steel by High Speed Water Drop Impacts

2006 ◽  
Vol 118 ◽  
pp. 179-184
Author(s):  
G.H. Kim ◽  
Min Ku Lee ◽  
G.M. Kim ◽  
Sung Mo Hong ◽  
Wheung Whoe Kim ◽  
...  

In this study, the water drop impact erosion properties of 12Cr steel surface-hardened by the flame hardening process have been studied. For this, both the maximum erosion depth de,max and volume loss Ve with the number of cumulative impacts n have been investigated for the flame-hardened 12Cr steels with different hardnesses. Typically all the samples showed an erosion-time characteristic involving an incubation period initially followed by a steady state period. Compared to those for the as-received 12Cr steel, the flame-hardened ones showed an excellent erosion resistance to water drop impacts, showing a 2.2~2.8 times higher incubation time ti and 5~8 times lower erosion rate α. In the incubation period the as-received 12Cr steel was deformed by a ductile depression and ploughing, while the flame-hardened one by fatigue cracks and a brittle platelet deformation. In the steady state period the damage was progressed by a cleavage fracture for both the stages.

Author(s):  
G.H. Kim ◽  
Min Ku Lee ◽  
G.M. Kim ◽  
Sung Mo Hong ◽  
Wheung Whoe Kim ◽  
...  

2015 ◽  
Vol 785 ◽  
Author(s):  
E. Q. Li ◽  
I. U. Vakarelski ◽  
S. T. Thoroddsen

When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular glass we observe a ring of microbubbles, due to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet, thereby leaving behind a ring of microbubbles marking the original air-disc diameter. On the other hand, no microbubbles are left behind when the drop impacts onto molecularly smooth mica sheets. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface, and the presence of the microbubbles can therefore distinguish between glass with 10 nm roughness and perfectly smooth glass. We contrast this entrapment topology with the initial contact of a drop impacting onto a film of extremely viscous immiscible liquid, where the initial contact appears to be continuous along the ring. Here, an azimuthal instability occurs during the rapid contraction at the triple line, also leaving behind microbubbles. For low impact velocities the nature of the initial contact changes to one initiated by ruptures of a thin lubricating air film.


2018 ◽  
Vol 70 (2) ◽  
pp. 245-256 ◽  
Author(s):  
N. Lardier ◽  
P. Roudier ◽  
B. Clothier ◽  
G. R. Willmott

2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


Author(s):  
Maral Taghva ◽  
Lars Damkilde

To protect a pressurized system from overpressure, one of the most established strategies is to install a Pressure Safety Valve (PSV). Therefore, the excess pressure of the system is relieved through a vent pipe when PSV opens. The vent pipe is also called “PSV Outlet Header”. After the process starts, a transient two-phase flow is formed inside the outlet header consisting of high speed pressurized gas interacting with existing static air. The high-speed jet compresses the static air towards the end tail of the pipe until it is discharged to the ambiance and eventually, the steady state is achieved. Here, this transient process is investigated both analytically and numerically using the method of characteristics. Riemann’s solvers and Godunov’s method are utilized to establish the solution. Propagation of shock waves and flow property alterations are clearly demonstrated throughout the simulations. The results show strong shock waves as well as high transient pressure take place inside the outlet header. This is particularly important since it indicates the significance of accounting for shock waves and transient pressure, in contrast to commonly accepted steady state calculations. More precisely, shock waves and transient pressure could lead to failure, if the pipe thickness is chosen only based on conventional steady state calculations.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 313
Author(s):  
Rui Zhang ◽  
Jun Peng ◽  
Bin Chen ◽  
Kai Gao ◽  
Yingze Yang ◽  
...  

Active braking control systems are vital for the safety of high-speed trains by leading the train operation at its maximum adhesion state. The train adhesion is a nonlinear function of the slip ratio and varies with the uncertain wheel-rail contact conditions. A nonlinear active braking control with rapid and accurate tracking performance is highly required for train braking systems. This paper proposes a novel prescribed performance active braking control with reference adaptation to obtain the maximum adhesion force. The developed feedback linearization controller employs a prescribed performance function that specifies the convergence rate, steady-state error, and maximum overshoot to ensure the transient and steady-state control performance. Furthermore, in the designed control approach, a continuous-time unscented Kalman filter is introduced to estimate the uncertainty of wheel-rail adhesion. The estimation is utilized to represent uncertainty and compensate for the prescribed performance control law. Finally, based on the estimated wheel-rail adhesion, an on-line optimal slip ratio generation algorithm is proposed for the adaptation of the reference wheel slip. The stability of the system is provided, and experiment results validate the effectiveness of the proposed method.


2021 ◽  
pp. 1-12
Author(s):  
Piero Danieli ◽  
Massimo Masi ◽  
Giovanni Delibra ◽  
Alessandro Corsini ◽  
Andrea Lazzaretto

Abstract This work deals with the application of the open source CFD code MULTALL to the analysis of tube-axial-fans. The code has been widely validated in the literature for high-speed turbomachine flows but not applied yet to low speed tutbomachines. The aim of this work is to assess the degree of reliability of MULTALL as a tool for simulating the internal flow in industrial axial-flow fan rotors. To this end, the predictions of the steady-state air flow field in the annular sector of a 315 mm tube-axial fan obtained by MULTALL 18.3 are compared with those obtained by two state-of-the-art CFD codes and experimental data of the global aerodynamic performance of the fan and the pitch-wise averaged velocity distribution downstream of the rotor. All the steady-state RANS calculations were performed on either fully structured hexahedron or hexa-dominant grids using classical formulations of algebraic turbulence models. The pressure curve and the trend of the aeraulic efficiency in the stable operation range of the fan predicted by MULTALL show very good agreement with both the experimental data and the other CFD results. Although the estimation of the fan efficiency predicted by MULTALL can be noticeably improved by the more sophisticated state-of-the-art CFD codes, the analysis of the velocity distribution at the rotor exit supports the use of MULTALL as a reliable CFD analysis tool for designers of low-speed axial fans.


Sign in / Sign up

Export Citation Format

Share Document