Crystallization of InSb Phase Near the Bonding Interface of Silicon-on-Insulator Structure

2007 ◽  
Vol 131-133 ◽  
pp. 137-142
Author(s):  
Ida E. Tyschenko ◽  
A.G. Cherkov ◽  
M. Voelskow ◽  
V.P. Popov

The behavior of Sb and In atoms embedded into silicon-on-insulator structure (SOI) near the bonding interface was investigated as a function of annealing temperature. Two kinds of the ionimplanted SOI structures were prepared. First kind of the structures contained the buried SiO2 layer implanted with In+ and Sb+ ions near the top Si/SiO2 interface. In second kind, the ion-implanted regions were placed on each side of the bonding interface: Sb+ ions were implanted into Si film; In+ ions were implanted into SiO2 layer. Rutherford backscattering spectrometry (RBS) and crosssectional high-resolution electron microscopy (XTEM) were employed to study the properties of the prepared structures. The formation of InSb nanocrystals was observed within the SiO2 bulk from first kind of the SOI structures as annealing temperature increased to 1100o C. In the case of the double side implanted SOI structures, an increase in annealing temperature to 1100o C was accompanied by the up-hill diffusion of In atoms from the SiO2 bulk toward the bonding interface and by the endotaxial growth of InSb nanocrystals on the top Si/SiO2 interface. It was concluded from the experimental results that Sb atoms were the nucleation centers of InSb phase.

1991 ◽  
Vol 6 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Supapan Visitserngtrakul ◽  
Stephen J. Krause ◽  
John C. Barry

Conventional and high resolution electron microscopy (HREM) were used to study the structure of {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm−2 below the buried oxide layer in the substrate region. The HREM images of the {113} defects are similar to the ribbon-like defects in bulk silicon. It is proposed that there is a third possible structure of the defects, in addition to coesite and/or hexagonal structures. Portions of some defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.


1989 ◽  
Vol 163 ◽  
Author(s):  
S. Visitserngtrakul ◽  
J. Barry ◽  
S. Krause

AbstractConventional and high resolution electron microscopy (HREM) were used to study the structure of the {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm-2 below the buried oxide layer in the substrate region. The {113} defects are similar to the ribbon-like defects in bulk silicon. Our HREM observations show that two crystalline phases are present in the defect. Portions of the defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.


2001 ◽  
Vol 16 (6) ◽  
pp. 1806-1813 ◽  
Author(s):  
J. C. Rao ◽  
Y. Zhou ◽  
D. X. Li

Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases, with L12- and L10- like cation-ordered structures, respectively, have been found in ZrO2–Y2O3 ceramics in both the sintered and annealed states. High-resolution electron microscopy, energy-dispersive x-ray spectroscopy and computer simulation have been used to reveal the presence of the phases. The formation of Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases was initiated during the sintering procedure and developed with the increase in annealing temperature and time. Segregation of yttrium, which was prevalent in different regions even within one grain, induced the formation of Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases.


1990 ◽  
Vol 183 ◽  
Author(s):  
S. Visitserngtrakul ◽  
C. O. Jung ◽  
B. F. Cordts ◽  
P. Roitman ◽  
S. J. Krause

AbstractHigh resolution electron microscopy (HREM) has been used to study the atomic arrangement of defects formed during high-dose oxygen implantation of silicon-on-insulator material. The effect of implantation parameters of wafer temperature, dose, and current density were investigated. Wafer temperature had the largest effect on the type and character of the defects. Above the buried oxide layer in the top silicon layer, HREM revealed that microtwins and stacking faults were created during implantation from 350–450°C. From 450–550°C, stacking faults were longer and microtwinning was reduced. From 550–700°C, a new type of defect was observed which had lengths of 40 to 140 nm and consisted of several discontinuous stacking faults which were randomly spaced and separated by two to eight atomic layers. We have referred to them as “multiply faulted defects” (MFDs). Beneath the buried oxide layer in the substrate region, the defects observed included stacking faults and ( 113 ) defects. The results indicated that some parts of the ( 1131 defects can assume a cubic diamond structure created through a twin operation across (115) planes. Details of the structure and formation mechanisms of MFDs and other defects will be discussed.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Author(s):  
J. C. Wheatley ◽  
J. M. Cowley

Rare-earth phosphates are of particular interest because of their catalytic properties associated with the hydrolysis of many aromatic chlorides in the petroleum industry. Lanthanum phosphates (LaPO4) which have been doped with small amounts of copper have shown increased catalytic activity (1). However the physical and chemical characteristics of the samples leading to good catalytic activity are not known.Many catalysts are amorphous and thus do not easily lend themselves to methods of investigation which would include electron microscopy. However, the LaPO4, crystals are quite suitable samples for high resolution techniques.The samples used were obtained from William L. Kehl of Gulf Research and Development Company. The electron microscopy was carried out on a JEOL JEM-100B which had been modified for high resolution microscopy (2). Standard high resolution techniques were employed. Three different sample types were observed: 669A-1-5-7 (poor catalyst), H-L-2 (good catalyst) and 27-011 (good catalyst).


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
Z.M. Wang ◽  
J.P. Zhang

High resolution electron microscopy reveals that antiphase domain boundaries in β-Ni3Nb have a hexagonal unit cell with lattice parameters ah=aβ and ch=bβ, where aβ and bβ are of the orthogonal β matrix. (See Figure 1.) Some of these boundaries can creep “upstairs” leaving an incoherent area, as shown in region P. When the stepped boundaries meet each other, they do not lose their own character. Our consideration in this work is to estimate the influnce of the natural misfit δ{(ab-aβ)/aβ≠0}. Defining the displacement field at the boundary as a phase modulation Φ(x), following the Frenkel-Kontorova model [2], we consider the boundary area to be made up of a two unit chain, the upper portion of which can move and the lower portion of the β matrix type, assumed to be fixed. (See the schematic pattern in Figure 2(a)).


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


Sign in / Sign up

Export Citation Format

Share Document