Process Window Determination for Thixoextrusion Processes Using a Steel Alloy

2008 ◽  
Vol 141-143 ◽  
pp. 61-66
Author(s):  
Frederik Knauf ◽  
René Baadjou ◽  
Gerhard Hirt

A direct semi-solid bar extrusion process is characterised by inserting a feed stock in a container and extruding through a forming die with a punch. Compared to conventional bar extrusion the use of semi-solid material complicates the process due to the requirement of solidification of the material. To achieve the solidification of the semi-solid bar, different basic tool concepts are presented. With a combination of these concepts experiments were carried out using the steel alloy X210CrW12 to detect the influence of the most influencing parameters press velocity, extrusion channel diameter, length and geometry. Numerical simulations enable a better understanding of the process mechanics like temperature development in the billet and forming die as well as the material flow in the deformation zone.

2006 ◽  
Vol 129 (2) ◽  
pp. 246-251 ◽  
Author(s):  
Gap-Yong Kim ◽  
Jun Ni ◽  
Rhett Mayor ◽  
Heesool Kim

The potentials of semi-solid forming technology have generated much interest regarding its application in micromanufacturing. This study investigates the feasibility of using semi-solid forming technology to produce parts with micro/meso features. An experimental setup has been developed to study the effects of die/punch temperature, initial solid fraction, punch speed, and workpiece shape on the semi-solid forming process. A part has been produced for a microreactor application and has been analyzed with an optical measurement system for feature formation. The results indicated complex interaction among the process parameters and the material flow, which affected the final pin formation. The punch temperature and velocity had a significant effect on the overall die filling. The initial workpiece shape and solidification of the semi-solid material during forming influenced the micro/meso-feature formation sequence, affecting the final pin formation. Furthermore, grain deformation and distribution of the formed parts were investigated. The grains became larger due to induction heating and the forming process. Severely distorted grains were observed at the corner regions of the pins and the punch-workpiece interface.


2008 ◽  
Vol 43 ◽  
pp. 9-16 ◽  
Author(s):  
Daniel Pietzka ◽  
Marco Schikorra ◽  
A. Erman Tekkaya

Extruded aluminum profiles are essential for lightweight constructions in contemporary transport and automotive applications. The reinforcement of such aluminum-based profiles with high-strength materials offers a high potential for weight reduction and an improvement of functional and mechanical properties. In comparison to conventional composite extrusion using fiber or particle reinforced billets, the alternatively developed process for the embedding of endless reinforcing elements provides enormous advantages regarding extrusion forces, load-adapted reinforcement, and tool abrasion. In this extrusion process with conventional billets, modified tools with portholes are used to position reinforcing elements from outside the pressing tool and to embed them into the material flow during the pressing operation. This composite extrusion process is part of the research work started in 2003 and carried out within the scope of the Collaborative Research Center SFB/TR10. To increase the potential of composite extrusion with endless reinforcing elements, the manufacture of composite extrusion profiles with high-strength non-metallic alumina wires is planned. Due to the wires’ specific properties, e.g. high stiffness, their deflection behavior must be analyzed to guarantee a stable feeding-in process. In this paper the specific behavior of alumina reinforcing elements regarding the feeding-in process is analyzed by experimental investigations. The main influencing factors are determined and a process window is deduced.


2011 ◽  
Vol 189-193 ◽  
pp. 1778-1781 ◽  
Author(s):  
Gui Hua Liu ◽  
Yong Qiang Guo ◽  
Zhi Jiang

By using Deform-3D software, the necking extrusion forming processes of integer trailer axle with two different heating means which are Uniform Heating (UH) method and Partly Heating (PH) method with temperature gradient are simulated. The influence of deformation parameters such as friction factor, necking coefficient, different temperature distribution of work-piece on the material flow features, stress and strain field, loading force and deformation process are analyzed in detail. According to the numerical simulation results, using PH method with temperature gradient can improve necking deformation during tube extrusion process.


2006 ◽  
Vol 519-521 ◽  
pp. 919-924 ◽  
Author(s):  
B.S. Ham ◽  
J.H. Ok ◽  
Jung Min Seo ◽  
Beong Bok Hwang ◽  
K.H. Min ◽  
...  

This paper is concerned with forward rod extrusion combined simultaneously with backward tube extrusion process in both steady and transient states. The analysis has been conducted in numerical manner by employing a rigid-plastic finite element method. AA 2024 aluminum alloy was selected as a model material for analysis. Among many process parameters, major design factors chosen for analysis include frictional condition, thickness of tube in backward direction, punch corner radius, and die corner radius. The main goal of this study is to investigate the material flow characteristics in combined extrusion process, i.e. forward rod extrusion combined simultaneously with backward tube extrusion process. Simulation results have been summarized in term of relationships between process parameters and extruded length and volume ratios, and between process parameters and force requirements, respectively. The extruded length ratio is defined as the ratio of tube length extruded in backward direction to rod length extruded in forward direction, and the volume ratio as that of extruded volume in backward direction to that in forward direction, respectively. It has been revealed from the simulation results that material flow into both backward and forward directions are mostly influenced by the backward tube thickness, and other process parameters such as die corner radius etc. have little influence on the volume ratio particularly in steady state of combined extrusion process. The pressure distributions along the tool-workpiece interface have been also analyzed such that the pressure exerted on die is not so significant in this particular process such as combined operation process. Comparisons between multi-stage forming process in sequence operation and one stage combined operation have been also made in terms of forming load and pressure exerted on die. The simulation results shows that the combined extrusion process has the greatest advantage of lower forming load comparing to that in sequence operation.


2015 ◽  
Vol 21 (5) ◽  
pp. 913-922 ◽  
Author(s):  
F. Hosseini Yekta ◽  
S. A. Sadough Vanini
Keyword(s):  

2022 ◽  
Vol 327 ◽  
pp. 111-116
Author(s):  
Laura Schomer ◽  
Kim Rouven Riedmüller ◽  
Mathias Liewald

Interpenetrating Phase Composites (IPC) belong to a special category of composite materials, offering great potential in terms of material properties due to the continuous volume structure of both composite components. While manufacturing of metal-ceramic IPC via existing casting and infiltration processes leads to structural deficits, semi-solid forming represents a promising technology for producing IPC components without such defects. Thereby, a solid open pore body made of ceramic is infiltrated with a metallic material in the semi-solid state. Good structural characteristics of the microstructure as the integrity of the open-pore bodies after infiltration and an almost none residual porosity within the composites have already been proven for this manufacturing route within a certain process window. On this basis, the following paper focuses on the mechanical properties such as bending strength of metal-ceramic IPC produced by using semi-solid forming technology. Thereby, the impact of the significant process parameters on these properties is analysed within a suitable process window. Furthermore, a fractographic analysis is carried out by observing and interpreting the fracture behaviour during these tests and the fracture surface thereafter.


2020 ◽  
Vol 8 (6) ◽  
pp. 4070-4077

Injection molding is one of the very significant methodologies in the plastic manufacturing industry. Production of any shape in the injection molding, mold with cavity must require. For this mold making three phases were involved in this project starting from design, analysis, manufacturing respectively. The objective of this project is to introduce detailed steps on design mold and using the simulation software to analyze the material flow, temperature and pressure characteristics of the product. The product designed and analyzed for this project is SAFE HOLDER and CAM. The manufacturing of mold is done by using advanced machinery such as CNC. The design and analysis of this product and mold were made by the designing analysis software CATIA V5, ANSYS 15.0, which is then stimulated by the use of Fluid Flow (Fluent) tool. This project was very useful in knowing the fluid characteristic behavior subjected to flowing inside the mold and also observed the variation of values with respect to given values at each stage. In this project, the analysis performed with taking polypropylene as a fluid from propylene polymer and steel as solid material for the die with inlet values are 230℃ temperature and 15m/s velocity.


2012 ◽  
Vol 192-193 ◽  
pp. 311-316
Author(s):  
Farzad Hosseini Yekta ◽  
S.A. Sadough ◽  
Vahid Pouyafar ◽  
Amin Jabbari

The key to all semisolid processes is spherical and non-dendritic particles suspended in a liquid matrix. This special kind of microstructure causes the semisolid material to behave like a non-Newtonian fluid dependent on time and shear rate. Semi solid metal processing gives less shrinkage and porosity, non-macro segregation, lower flow stress, good formability and increased die life compared with conventional production methods. Therefore, semi solid processing introduces a good option for massive forming of high temperature alloys. Here, by partial remelting of M2 tool steel alloy under rapid compression test, deformation mechanism of steel alloy and its correlation to rheological properties were investigated. Flow stress for M2 tool steel alloy corresponding to solid fraction above 55% derived at constant strain rate and holding time. In order to investigate the parameter involved in this process, in the second stage of experiments the ram speed and holding time are variable. The analysis of the derived curves shows that the semisolid slurries exhibit a pseudo plastic behavior dependent on stain rate and temperature. The classical power law model used to describe the rheological and thixotropic dependence.


2013 ◽  
Vol 585 ◽  
pp. 165-171 ◽  
Author(s):  
Stanka Tomovic-Petrovic ◽  
Rune Østhus ◽  
Ola Jensrud

Numerical analysis of the material flow during the extrusion process for high alloyed variants of the AA 6xxx series is presented in this paper. The analysis was performed by using the commercial FE code Forge2011®. Another issue considered in the paper was an interrelation between the die geometry and the critical extrusion process variables. For optimization of the die exit geometry, the model was produced with the use of linked equation in SolidWorks® combined with Mode FRONTIER. Several extrusion trials were performed to provide a basis for the verification of simulation results as extrusion temperature, speed and force. For the purpose, rods of a model alloy designated as AlMgSi4, based on an industrial AA6082 aluminium alloy with significantly higher silicon content, were extruded. A good correlation between measured and calculated results was obtained. This approach may enable simplifying when dealing with design of a new alloy.


Sign in / Sign up

Export Citation Format

Share Document