Solidification Process, Microstructure, Density and Hardness of the Mg-Al Alloys with Zn, Cu, Ni and AlTiB Additions

2011 ◽  
Vol 176 ◽  
pp. 91-98
Author(s):  
Franciszek Binczyk

The paper presents the results of the investigations of the solidification process of magnesium alloys containing 5 and 10 wt.% Al, the additions of Zn, Cu, Ni, and of an AlTiB master alloy. The plotted DTA (derivative thermal analysis) curves were used for the determination of solidification parameters Tliq, Teut and Tsol. Knowledge of these parameters is very important in determination of alloy pouring temperature and maximum casting operating temperature. On samples taken from the area of temperature measurements, the chemical composition and microstructure were determined. The density and hardness HB were measured as well. Applying the method of multiple regression analysis at the significance level α = 0.1, the intensity and direction of the effect of alloying elements on the solidification parameters, density and hardness HB of castings were evaluated.

2010 ◽  
Vol 457 ◽  
pp. 499-504
Author(s):  
Vasilios Fourlakidis

This paper investigates the effects of graphite added as a conditioner, of Lantanum containing nodulariser and of pouring temperature on the formation of shrinkage porosity in ductile iron casting with an eutectic composition. In this experiment for each heat the cooling curves were recorded by the use of Quick-Cups (thermal analysis cups) and different solidification parameters such as TElow, GRF1, GRF2 and TS were calculated and compared with the porosity which was found from the microstructure examination. The results show that there is a good correlation between the amount of the shrinkage formation and the thermal analysis values. Also this experiment confirm that by using certain treating elements and pouring temperature which was between 1340-1350°C it is possible to eliminate the shrinkage defects in ductile iron castings without using feeders.


2020 ◽  
Vol 10 (7) ◽  
pp. 2472
Author(s):  
Ester Villanueva ◽  
Iban Vicario ◽  
Jon Mikel Sánchez ◽  
Ignacio Crespo

This work aims to calculate the rigidity point temperature of aluminum alloys by three new methods and compare them with currently employed methods. The influence of major and minor alloying elements over the rigidity point temperature is also discussed. Until now it has been difficult to determine the exact temperature of the rigidity point, since small variations in the data obtained give variable results, making it difficult to automate the process with high accuracy. In this work we suggested three new mathematic methods based on the calculation of higher order derivatives of (dT/dt) with respect to time or temperature compared to those currently employed. A design of experiments based on the Taguchi method was employed to compare the effect of the major and minor alloying elements for the AlSi10Mg alloy, and to evaluate the accuracy of each developed method. Therefore, these systems will allow better automation of rigidity point temperature (RPT) determination, which is one of the most important solidification parameters for solidification simulators. The importance of the correct determination of this parameter lies in its relation to quality problems related to solidification, such as hot tearing. If the RPT presents very low-temperature values, the aluminum casting will be more sensitive to hot tearing, promoting the presence of cracks during the solidification process. This is why it is so important to correctly determine the temperature of the RPT. An adequate design of chemical composition by applying the methodology and the novel methods proposed in this work, and also the optimization of process parameters of the whole casting process with the help of the integrated computational modeling, will certainly help to decrease any internal defective by predicting one of the most important defects present in the aluminum industry.


2016 ◽  
Vol 254 ◽  
pp. 14-19 ◽  
Author(s):  
Iulian Riposan ◽  
Ion Stefan ◽  
Ciprian Firican ◽  
Stelian Stan

The cooling curve and its derivatives display patterns that can be used to predict the characteristics of a cast iron. The effects of melting, superheating and holding in an acid lined coreless induction furnace were explored, as they affect the role of preconditioning and / or inoculation to restore solidification with low eutectic undercooling. Increased chill (iron carbides amount) in the experimental irons correlates well with certain thermal analysis parameters, such as the degree of eutectic undercooling. Preconditioning of the molten base iron before tapping led to improved solidification parameters in both untreated and inoculated irons as measured by the most significant thermal analysis cooling curve events. A double treatment incorporating preconditioning with inoculation improved the thermal analysis parameters, and consequently, the quality of the cast iron. If standard Ca-FeSi alloys do not have sufficient inoculation potential, the addition of the inoculant enhancing alloy (S, O and oxy-sulphides forming elements) will greatly enhance inoculation, well illustrated by changes to the thermal analysis parameters. A newly defined Inoculation Specific Factor [inoculation effect / inoculant consumption which led to that beneficial effect ratio] of different alloys is illustrated by thermal analysis, with good correlation with microstructural characteristics.


GIS Business ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 136-158
Author(s):  
Eneji Chris-Valentine Ogar ◽  
Petters Janet Sunday ◽  
Onnoghen Usang Nkanu ◽  
Asuquo Edung Etim

This study assessed the influence of teacher’s characteristics and other related factors in the implementation of Environmental Education curriculum in secondary schools in Cross River State, Nigeria. Two research designs were used, survey inferential and Expost facto research design. The study is located in the department of Environmental Education, University of Calabar, Nigeria. Two research questions converted into two hypotheses were formulated for the study.  A sample of three hundred (300) respondents were selected using the multistage random sampling technique comprising of twenty five (25) lecturers and two hundred and seventy five (275) postgraduate and final year undergraduate students in the department of Environmental Education, University of Calabar. Data was collected using a structured questionnaire, the instrument administration was done by the researchers and same were collected 100%. Pearson Product Moment Correlation Analysis and regression analysis were used to test the hypotheses at 0.05 significance level and 298 and 290 degrees of freedom respectively. The result shows that teacher’s characteristics do significantly influence Environmental Education curriculum implementation in secondary schools. The regression analysis also shows that 6 factors listed impedes the implementation of Environmental Education curriculum, while four were not significant factors influencing Environmental Education curriculum in secondary schools. It was however recommended that teachers with competence in pedagogic knowledge of Environmental Education with classroom management skill should be employed to drive the process, while arrangement should be put in place to make Environmental Education a subject for students to offer and write in final senior secondary school examination among other.


2020 ◽  

The banana agro-export sector in Ecuador provides millions of dollars in income for this concept, but with this development, a series of quality standards have been established that must be met to enter the export system. This has contributed to establishing good post-harvest production and management practices that guarantee the optimal production of bananas and plantains. The objective of this study was to determine the factors involved in the rejection of bananas (Musa acuminata) destined for international commercialization. The methodology considered the design modality of non-experimental transactional research, with a quantitative approach. The methodological design was developed in three phases at Finca 6 Hermanas located in the Barraganete sector of the San Juan parish in the Puebloviejo canton of the Los Ríos Province, Ecuador. The results highlight that the main causes for which banana rejection is generated are due to abiotic factors (damage, dry latex, scar, insect damage, broken neck, overgrowth) in a higher percentage of 79.55 % and biotic factors ( twins, diseases, short finger) by 20.45 %. The average rejection was 6 361 fingers and1 269 Kilograms (K) over the 6-week study duration. The analysis of variance turned out to be significant for variable 1 (biotic and abiotic). Ho is rejected; with the criterion of p-value < 0.0001 and F (9; 45) = 2.10., F = 13.17> F critic. In the case of variable (2) “work weeks”, Ho is accepted with the criteria obtained of p-value of 0.7694 and F (5; 45) = 2.4., As F = 0.51 < F critic, it is concludes, that with a significance level of 5% the null hypothesis is accepted. It is concluded that these figures lead to the elaboration of strategies that systemically mitigate the damages, by correcting each one of the causes that cause the deterioration of the banana and increasing the economic gains of the commercialization process.


2021 ◽  
Vol 13 (7) ◽  
pp. 3727
Author(s):  
Fatema Rahimi ◽  
Abolghasem Sadeghi-Niaraki ◽  
Mostafa Ghodousi ◽  
Soo-Mi Choi

During dangerous circumstances, knowledge about population distribution is essential for urban infrastructure architecture, policy-making, and urban planning with the best Spatial-temporal resolution. The spatial-temporal modeling of the population distribution of the case study was investigated in the present study. In this regard, the number of generated trips and absorbed trips using the taxis pick-up and drop-off location data was calculated first, and the census population was then allocated to each neighborhood. Finally, the Spatial-temporal distribution of the population was calculated using the developed model. In order to evaluate the model, a regression analysis between the census population and the predicted population for the time period between 21:00 to 23:00 was used. Based on the calculation of the number of generated and the absorbed trips, it showed a different spatial distribution for different hours in one day. The spatial pattern of the population distribution during the day was different from the population distribution during the night. The coefficient of determination of the regression analysis for the model (R2) was 0.9998, and the mean squared error was 10.78. The regression analysis showed that the model works well for the nighttime population at the neighborhood level, so the proposed model will be suitable for the day time population.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 936
Author(s):  
Milan Kojić ◽  
Branka Protić Gava ◽  
Milan Bajin ◽  
Marko Vasiljević ◽  
Jasmina Bašić ◽  
...  

Background: The research objective of the study is to determine the differences in the manifestation of the motor status of normally fed preschool test subjects, classified into groups according to foot status. Methods: This is a simple, comparative observational study. Preschool children included in this study have been subjected to anthropometric measurements in order to determine BMI, tests for motor skills assessment (running at 20 m from a high start, standing broad jump, backwards polygon, rectangular seated forward bend, plate tapping, sit-ups for 60 s, and bent arm hang), and a determination of foot status. The total sample was comprised of 202 test subjects who attended a regular sports program, aged 3.9 to 6.5 years of decimal age (M = 141; Age = 5.3 ± 0.74; Height = 117.3 ± 7.1; Weight = 22 ± 3.7; F = 61; Age = 5.1 ± 0.73; Height = 114.9 ± 7.4; Weight = 21.2 ± 3.8), of which 153 (75.7%) were normally fed, 6 (3%) were undernourished, 30 were overweight (14.9%), and 13 were obese (6.4%). Results: In the total sample, 30 (14.9%) subjects had normal arch feet, 90 (44.6%) high arched feet, and 41 (20.3%) flat feet. We found 41 (20.3%) subjects who had different left and right foot statuses within this sample. The data were processed by means of nonparametric tests (the Kruskal–Wallis and Mann–Whitney U tests) at a significance level p ≤ 0.05. Conclusion: The results show that there is a statistically significant difference between groups of subjects with different foot statuses in the manifestation of motor status in most tests, with a significance level of p ≤ 0.01, and in tests of sit-ups for 60 s and the bent arm hang, there is a statistically significant difference, the level of which is p ≤ 0.05. It is only in the inclination test of rectangular seated forward bend that no statistically significant difference was displayed.


1980 ◽  
Vol 53 (3) ◽  
pp. 437-511 ◽  
Author(s):  
D. W. Brazier

Abstract An attempt has been made to review the development of thermoanalytical procedures as they have been applied to elastomers and elastomer systems over the past 10 years. For all rubber industry products, temperature and its effects, either alone or in conjunction with the chemical environment, play an important role from the production stage through to the final failure of the product in the field. It is thus not surprising that thermal analysis, in which temperature is the prime variable, has found such diverse applications in elastomer studies. The identification and quantitative analysis of rubber formulations have received most attention. Such formulations produce characteristic “fingerprints” when studied in DTA, DSC, TG, or TMA. In DSC, the determination of the glass transition characteristics, the observation and determination of crystallinity, the detection of cyclization reactions, and the monitoring of thermal and oxidative degradation characteristics can all be observed in a single experiment covering the temperature range from −150 to +600°C. At normal heating rates, e.g., 20°C/min, such information is available in 40 min. TG/DTG analysis can yield the elastomer or elastomers content, oil and plasticizer, carbon black (level and often type), and inorganic ash in less than 60 min. Processing and curing can also be studied. Blend compatibility can be assessed on the basis of both Tg and crystallinity measurements and the data used to determine optimum mixing times. Sulfur vulcanization and peroxide curing of elastomers is readily monitored by DSC and can be used for confirmation analysis of the presence of curatives. Limitations in such analysis exist, but as understanding and ability to interpret cure exotherms increase, valuable information about the mechanism and the nature of the cured network will be obtained. The testing of rubber compounds involves many hours of labor by current procedures. The rapidity of thermal analysis promises to offer some relief. In addition to DSC and TG, TMA, a relatively new technique, offers a rapid approach to low-temperature testing. Dynamic mechanical analysis (DMA) offers a rapid route to determining dynamic properties, but as yet, relatively little has been published on the application of this new technique to elastomers. As environmental concern increases, techniques such as evolved gas analysis (EGA) and combined techniques such as TG/gas chromatography are predicted to play an important role. As for the future, it is readily apparent that the principles of the methods have been established and, in several cases, it now remains to reduce them to a practical level. In some areas, such as vulcanization studies, much remains to be undertaken to improve our interpretive skills. Although there is some indication that certain industries have produced “in-house” standards for the analysis of rubber compounds by DSC and TG/DTG, it will only be when national and international standards organizations study and produce standard procedures, that the techniques will be generally adopted. Maurer's prediction in 1969 of increased applications of DTA and TG in elastomer studies has undoubtedly proved correct, and with the proliferation of reliable commercial instrumentation, significant developments can be anticipated in the next decade.


Sign in / Sign up

Export Citation Format

Share Document