Influences of Charged Dislocations on Performance of III-V Compound Semiconductor FinFETs

2013 ◽  
Vol 205-206 ◽  
pp. 429-434 ◽  
Author(s):  
Ji Hyun Hur ◽  
Myoung Jae Lee ◽  
Seong Ho Cho ◽  
Young Soo Park

We present a model for charged dislocations effects on III-V compound semiconductor based FinFETs performance. The model is developed to obtain momentum relaxation time and, from it, key device performance parameters such as effective mobility, threshold voltage, and finally saturation drain current. We find out that charged threading edge dislocation density of a FinFET channel should be smaller than about 107cm-2to ignore the dislocation scattering impact on the device performance which is roughly one order more strict condition than previously known condition for wurtzite GaN.

2006 ◽  
Vol 286 (2) ◽  
pp. 255-258 ◽  
Author(s):  
Y.B. Pan ◽  
Z.J. Yang ◽  
Z.T. Chen ◽  
Y. Lu ◽  
T.J. Yu ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 654
Author(s):  
Shouyi Wang ◽  
Qi Zhou ◽  
Kuangli Chen ◽  
Pengxiang Bai ◽  
Jinghai Wang ◽  
...  

In this work, novel hybrid gate Ultra-Thin-Barrier HEMTs (HG-UTB HEMTs) featuring a wide modulation range of threshold voltages (VTH) are proposed. The hybrid gate structure consists of a p-GaN gate part and a MIS-gate part. Due to the depletion effect assisted by the p-GaN gate part, the VTH of HG-UTB HEMTs can be significantly increased. By tailoring the hole concentration of the p-GaN gate, the VTH can be flexibly modulated from 1.63 V to 3.84 V. Moreover, the MIS-gate part enables the effective reduction in the electric field (E-field) peak at the drain-side edge of the p-GaN gate, which reduces the potential gate degradation originating from the high E-field in the p-GaN gate. Meanwhile, the HG-UTB HEMTs exhibit a maximum drain current as high as 701 mA/mm and correspond to an on-resistance of 10.1 Ω mm and a breakdown voltage of 610 V. The proposed HG-UTB HEMTs are a potential means to achieve normally off GaN HEMTs with a promising device performance and featuring a flexible VTH modulation range, which is of great interest for versatile power applications.


2010 ◽  
Vol 247 (7) ◽  
pp. 1710-1712 ◽  
Author(s):  
Richard Gutt ◽  
Lutz Kirste ◽  
Thorsten Passow ◽  
Michael Kunzer ◽  
Klaus Köhler ◽  
...  

2013 ◽  
Vol 854 ◽  
pp. 29-34 ◽  
Author(s):  
Dmitry Osintsev ◽  
V. Sverdlov ◽  
Siegfried Selberherr

We consider the impact of the surface roughness and phonon induced relaxation on transport and spin characteristics in ultra-thin SOI MOSFET devices. We show that the regions in the momentum space, which are responsible for strong spin relaxation, can be efficiently removed by applying uniaxial strain. The spin lifetime in strained films can be improved by orders of magnitude, while the momentum relaxation time determining the electron mobility can only be increased by a factor of two.


2020 ◽  
Vol 551 ◽  
pp. 125893
Author(s):  
Yangfeng Li ◽  
Shen Yan ◽  
Xiaotao Hu ◽  
Yimeng Song ◽  
Zhen Deng ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 3-8 ◽  
Author(s):  
Daisuke Nakamura

Recent reports on the impact of elementary dislocations on device performance and reliability suggest not only micropipe defects but also dislocations should be reduced or eliminated perfectly. This paper presents bulk growth process for reduction of the dislocations, and quality of the crystals grown by the process. Etch pit density of the best crystals grown by the process was lower by three orders of magnitude than that of conventional crystals. Moreover, large diameter crystals (>2”) with low dislocation density were successfully grown by the process.


2014 ◽  
Vol 778-780 ◽  
pp. 1197-1200
Author(s):  
Masato Hori ◽  
Yuki Asai ◽  
Masashi Yoneoka ◽  
Isao Tsunoda ◽  
Kenichiro Takakura ◽  
...  

To solve the problem of the limitation to improve device performance in standard Si integration technologies and to develop radiation-harsh devices, the irradiation effects of Si1-xCx source/drain (S/D) n-type metal oxide semiconductor field effect transistors (n-MOSFETs) have been investigated. It is shown that the drain current and the maximum electron mobility of Si1-xCx n-MOSFETs decrease by electron irradiation. The reduction of the device performance can be explained by the radiation-induced lattice defects in the devices. However, the electron mobility enhancement effect by adding C remained after an electron irradiation up to 5×1017 e/cm2.


1999 ◽  
Vol 572 ◽  
Author(s):  
Won Sang Lee ◽  
Yoon Ho Choi ◽  
Ki Woong Chung ◽  
Moo Whan Shin ◽  
Dong Chan Moon

ABSTRACTA new photo-electrochemical etching method was developed and used to fabricate GaN MESFETs. The etching process uses photoresist for masking illumination and the etchant is KOH based. The etching rate with 1.0 mol% of KOH for n-GaN is as high as 1600 Å/min under the Hg illumination of 35 mW/cm/2. The MESFET saturates at VDS = 4 V and pinches off at VGS = −3 V. The maximum drain current of the device is 230 mA/mmn at 300 K and the value is remained almost same for 500 K operation. The characteristic frequencies, fT and fmax, are 6.35 GHz and 10.25 GHz, respectively. Insensitivity of the device performance to temperature was attributed to the defect-related high activation energy of dopants for ionization and band-bending at the subgrain boundaries in GaN thin films.


Sign in / Sign up

Export Citation Format

Share Document