The Synthesis and Characterization of PVA-Ketoprofen Cryogel, Biomaterial with Extended Drug Release Properties for Cartilage Replacement

2014 ◽  
Vol 216 ◽  
pp. 205-209
Author(s):  
Monica Cretan Stamate ◽  
Ciprian Stamate

The present paper aims to study the possibility to modify the properties of polyvinyl alcohol (pva) cryogels prepared in the presence of ketoprofen in order to replace the damaged articular cartilage. Articular cartilage is the most important part of articulation characterized by very low friction, high wear resistance, and poor regenerative qualities. Polyvinyl alcohol is a non-expensive polymer, versatile and adaptable to various needs, with exceptional properties such as water solubility, biocompatibility, non-toxicity and with capability to form hydrogels by chemical or physical methods. The aims of this paper are the synthesis, the physicochemical characterization and analysis of the tribological properties of pva cryogels for cartilage replacement and the introduction of new concept in medication by creating the cryogel like a controlled drug release system. The morphology of the cryogels, the interaction between the pva macromolecular chains and medicament has been studied by Scanning Electronic Microscopy. The gels swelling in physiologic ser have been monitored by gravimetric method in order to evidence the hydrophilic properties. The mechanical properties of the cryogels have been investigated by dynamic mechanical measurements. In conclusion, the biomaterial obtained provides good swelling properties, mechanical resistance and it is ideal for extended drug release implantable systems.

2008 ◽  
Vol 61 (9) ◽  
pp. 675 ◽  
Author(s):  
Anwen M. Krause-Heuer ◽  
Maxine P. Grant ◽  
Nikita Orkey ◽  
Janice R. Aldrich-Wright

An ideal platinum-based delivery device would be one that selectively targets cancerous cells, can be systemically delivered, and is non-toxic to normal cells. It would be beneficial to provide drug delivery devices for platinum-based anticancer agents that exhibit high drug transport capacity, good water solubility, stability during storage, reduced toxicity, and enhanced anticancer activity in vivo. However, the challenges for developing drug delivery devices include carrier stability in vivo, the method by which extracellular or intracellular drug release is achieved, overcoming the various mechanisms of cell resistance to drugs, controlled drug release to cancer cells, and platinum drug bioavailability. There are many potential candidates under investigation including cucurbit[n]urils, cyclodextrins, calix[n]arenes, and dendrimers, with the most promising being those that are synthetically adaptable enough to attach to targeting agents.


2018 ◽  
Vol 237 ◽  
pp. 02004
Author(s):  
Jirapornchai Suksaeree ◽  
Chomnapas Chuchote

This paper presented the swelling properties of propranolol HCl-loaded polyvinyl alcohol-graft-lactic acid (PPH-loaded PVA-g-LA) hydrogel films. The swelling properties including swelling-deswelling measurement and swelling behaviour in different environmental stimuli fluids such as water, various pH, and various ionic strength were determined. It was found that the swelling properties of the PPH-loaded PVA-g-LA hydrogel films depend on the LA amount addition. They had a good swelling and deswelling in water and acetone. The PPH-loaded PVA-g-LA hydrogel films showed the high swelling in the medium pH 7. Thus, the prepared PPH-loaded PVA-g-LA hydrogel films had a good swelling property that could be used to controlled drug release in pharmaceutical product.


2013 ◽  
Vol 747 ◽  
pp. 131-134
Author(s):  
Somkamon Manchun ◽  
Sontaya Limmatvapirat ◽  
Pornsak Sriamornsak

Modified starches have been widely used as an excipient in matrix tablets to control drug release. A new processing method for the production of modified starch, high power ultrasonic treatment (400 W), was applied to native tapioca starch. The spray drying technique was used after modification (i.e., by ultrasonic or heat treatment). Matrix tablets were then prepared by direct compression using theophylline as a model drug. The effect of starch modification on swelling, erosion and in vitro drug release behaviors of compressed matrices was investigated in 0.1 N HCl or phosphate buffer (pH 6.8). The matrix tablets of modified tapioca starch formed a continuous gel layer while in contact with the aqueous medium undergoing a combination of swelling and erosion. The ultrasound-treated starch swelled and eroded less than the native starch and heat-treated starch, thus the drug release from matrix tablets using ultrasound-treated starch was slower. For these results, it can be concluded that the ultrasound-treated starch was a promising excipient for controlled drug release.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Elisabetta Mazzotta ◽  
Selene De Benedittis ◽  
Antonio Qualtieri ◽  
Rita Muzzalupo

The clinical efficacy of methotrexate (MTX) is limited by its poor water solubility, its low bioavailability, and the development of resistance in cancer cells. Herein, we developed novel folate redox-responsive chitosan (FTC) nanoparticles for intracellular MTX delivery. l-Cysteine and folic acid molecules were selected to be covalently linked to chitosan in order to confer it redox responsiveness and active targeting of folate receptors (FRs). NPs based on these novel polymers could possess tumor specificity and a controlled drug release due to the overexpression of FRs and high concentration of reductive agents in the microenvironment of cancer cells. Nanoparticles (NPs) were prepared using an ionotropic gelation technique and characterized in terms of size, morphology, and loading capacity. In vitro drug release profiles exhibited a glutathione (GSH) dependence. In the normal physiological environment, NPs maintained good stability, whereas, in a reducing environment similar to tumor cells, the encapsulated MTX was promptly released. The anticancer activity of MTX-loaded FTC-NPs was also studied by incubating HeLa cells with formulations for various time and concentration intervals. A significant reduction in viability was observed in a dose- and time-dependent manner. In particular, FTC-NPs showed a better inhibition effect on HeLa cancer cell proliferation compared to non-target chitosan-based NPs used as control. The selective cellular uptake of FTC-NPs via FRs was evaluated and confirmed by fluorescence microscopy. Overall, the designed NPs provide an attractive strategy and potential platform for efficient intracellular anticancer drug delivery.


2015 ◽  
Vol 38 ◽  
pp. E74-E80 ◽  
Author(s):  
Jhimli P. Guin ◽  
C.V. Chaudhari ◽  
K.A. Dubey ◽  
Y.K. Bhardwaj ◽  
L. Varshney

2020 ◽  
Vol 75 (7) ◽  
pp. 587-591
Author(s):  
Natália Babincová ◽  
Oldřich Jirsák ◽  
Melánia Babincová ◽  
Peter Babinec ◽  
Mária Šimaljaková

AbstractAn efficient method for the large-scale fabrication of composite polyvinyl alcohol polymer nano fibers loaded with magnetic nanoparticles and methotrexate is reported in this study. We have demonstrated that nonwoven textile formed by needleless electro spinning is effective in immobilization and triggered the release of drugs, which is achieved by an alternating magnetic field induced heating of magnetic nanoparticles. This smart stimuli-responsive release ability, biocompatibility, and ultra-lightweight property render enormous potential for this electrospun nano fiber mat to be used as an anti-psoriatic drugs release platform, which may have far-reaching applications in dermatology.


Sign in / Sign up

Export Citation Format

Share Document