Failure Behaviors of 2D-Cf/Mg Composites Fabricated by Liquid-Solid Extrusion Following Vacuum Pressure Infiltration

2016 ◽  
Vol 256 ◽  
pp. 216-221
Author(s):  
Shao Lin Li ◽  
Le Hua Qi ◽  
Ji Ming Zhou ◽  
Ting Zhang ◽  
Kai Yuan Dong

Liquid-solid extrusion following vacuum pressure infiltration technique (LSEVI), which integrates melting, pouring, infiltration, and liquid-solid forming under high infiltration pressure, is a promising technique for the fabrication of metal matrix composite. LSEVI technology combines the advantages of both squeeze casting and gas pressure infiltration method. In this study, 2D carbon fiber reinforced AZ91D matrix composites (2D-Cf/Mg composites) were fabricated by LSEVI. Pyrolytic carbon (PyC) coating was deposited on surface of T700 carbon fiber by chemically vapour deposited (CVD) before fabrication. SEM observation indicated that the composites were well fabricated by LSEVI. The ultimate tensile strength of 2D-Cf/Mg composites fabricated by LSEVI was 390-410 MPa. Two kinds of failure behavior were found during tensile test: abrupt failure and progressive failure. The abrupt failure was characterized by a complete failure after the ultimate tensile strength (UTS) was reached. The progressive failure was a unique failure behavior with gradual damage after the UTS. In the case of progressive failure, the remaining strength after the UTS was 79% of the UTS. There was a remaining strength of 200 MPa under the strain of 0.1. Fracture surface morphology indicated that the remaining strength was attributed to the gradual breakage of the fiber bundles.

2020 ◽  
Author(s):  
Donglin Zhao ◽  
Tong Guo ◽  
X.M. Fan ◽  
Chao Chen ◽  
Yue Ma

Abstract The effect of pyrolytic carbon (PyC) thickness on the tensile property of mini T800-carbon fiber reinforced SiC matrix composites (mini-C/SiC) was studied in this work. PyC interphase was prepared by CVI process, and the PyC thickness was adjusted from 0 to 400 nm. The results showed that the tensile strength of mini-C/SiC first increased and then decreased with the increase of the PyC thickness. When the thickness of PyC was 100 nm, the average strength reached the maximum value of 393±70 MPa. Weibull modulus increased from 2.0 to 8.06 with the increase of PyC thickness, indicating that the increase of PyC thickness is conducive to reducing the dispersion of mechanical properties.


2021 ◽  
Vol 5 (12) ◽  
pp. 307
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
Zhefeng Xu

A new fabrication process without preform manufacturing has been developed for carbon short fiber (CSF) reinforced various aluminum matrix composites. And their mechanical and thermal properties were evaluated. Electroless Ni plating was conducted on the CSF for improving wettability between the carbon fiber (CF) and aluminum. It was confirmed that pores in Ni plated CSF/Al and Al alloy matrix composites prepared by applied pressure, 0.8 MPa, had some imperfect infiltration regions between the CF/CF and CF/matrix in all composites. However, pores size in the region between the CF/CF and CF/matrix to use the A336 matrix was about 1 µm. This size is smaller than that of other aluminum-based composites. Vickers hardness of Ni plated CSF/A1070, A356 alloy, and A336 alloy composites were higher as compared to matrix. However, the A1070 pure aluminum matrix composite had the highest hardness improvement. The Ultimate tensile strength of the A1070 and A356 aluminum matrix composite was increased due to carbon fiber compared to only aluminum, but the Ultimate tensile strength of the A336 aluminum matrix composite was rather lowered due to the highest content of Si precipitate and large size of Al3Ni compounds. The Thermal Conductivity of Ni plated CSF/A1070 composite has the highest value (167.1 W·m−1·K−1) as compared to composites.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


Sign in / Sign up

Export Citation Format

Share Document