Studies on Tensile Properties of Compatibilized and Uncompatibilized Low-Density Polyethylene/Jackfruit Seed Flour (LDPE/JFSF) Blends at Different JFSF Content

2017 ◽  
Vol 264 ◽  
pp. 120-123 ◽  
Author(s):  
Sung Ting Sam ◽  
Omar Sabbar Dahham ◽  
Pei Gie Gan ◽  
N.Z. Noimam ◽  
Jingi Y. Kuan ◽  
...  

Currently, natural fillers seem to be the suitable materials in polymer industry, which have emerged as a viable and abundant replacement for the relatively high-cost and non-renewable conventional fillers. However, the direct introduction of natural fillers into polymer matrix could effect negatively on some properties. Therefore, the aim of this work is to evaluate the influence of jackfruit seed flour (JFSF) (before and after compatibilization) on the tensile properties of (LDPE/JFSF) blends. Different JFSF content (5, 10, 15 and 20 wt.%) with (63-100 𝜇𝑚) particle size were prepared in this work. Twin-screw extruder at 150°C and 50rpm screw speed followed by hot-compress machine at 150°C and 10MPa pressure were used respectively to produce (LDPE/JFSF) blends. Adipic acid (AA) solution was added as a compatibilizer into all blends equally (25wt% AA into 75wt% JFSf). The changes of tensile and morphological properties were investigated. Results shown decreasing on tensile strength and elongation at break of LDPE/JFSF and LDPE/JFSF/AA as JFSF increased. In contrast, Young’s modulus increased up to 10 wt.% of JFSF and then decreased. However, the addition of Adipic acid, particularly for JFSF 5wt.% has improved the tensile properties of LDPE/JFSF blends. The SEM micrographs showed the agglomeration at high JFSF content (20 wt%) which in turn effected negatively on the tensile properties. However, the blends show homogeneous surfaces as AA added.

2015 ◽  
Vol 735 ◽  
pp. 70-74
Author(s):  
Ibrahim Mohammed Inuwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

This work investigates the effect of compatibilizer concentration on the mechanical properties of compatibilized polyethylene terephthalate (PET) /polypropylene (PP) blends. A blend containing 70 % (wt) PET, 30 % (wt) PP and 5 - 15 phr compatibilizers were compounded using counter rotating twin screw extruder and fabricated into standard test samples using injection molding. The compatibilizer used is styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (SEBS-g-MAH). Morphological studies show that the particle size of the dispersed PP phase is dependent on the compatibilizer content up to 10 phr. Impact strength and elongation at break showed maximum values with the addition of 10 phr SEBS-g-MAH and a corresponding decrease in flexural and young’s moduli; and strengths.. Overall the mechanical properties of PET/PP blends depend on the control of the morphology of the blend and can be achieved by effective compatibilization using 10 phr SEBS-g-MAH.


2013 ◽  
Vol 747 ◽  
pp. 673-677 ◽  
Author(s):  
Worasak Phetwarotai ◽  
Duangdao Aht-Ong

Biodegradable ternary blend films of nucleated polylactide (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and thermoplastic starch (TPS) with the presence of nucleating agent and compatibilizer were prepared via a twin screw extruder. The effects of compatibilizer types and starch contents on the thermal, morphological, and tensile properties of these blend films were evaluated. Two types of compatibilizer (methylene diphenyldiisocyanate (MDI) and polylactide-graft-maleic anhydride (PLA-g-MA)) were used for enhancing an interfacial adhesion of the blends, whereas TPS from tapioca starch was added as a filler at various concentrations (0 to 40 wt%). In addition, talc and PBAT acted as a nucleating agent and a flexible polymer were fixed at 1 phr and 10 wt%, respectively. The results indicated that the thermal stability of the blend films was affected from the presence of compatibilizer and TPS. In addition, the tensile properties and compatibility of PLA, PBAT, and TPS blends were improved with the addition of compatibilizer compared to uncompatibilized blend films as evidenced by SEM results. Furthermore, the blend films with MDI gave higher mechanical properties than those with PLA-g-MA at all compositions. The water absorption of the ternary blend films was evidently increased when the TPS amount was increased; in contrast, tensile strength and elongation at break (EB) of these blend films were significantly decreased.


2010 ◽  
Vol 93-94 ◽  
pp. 169-172
Author(s):  
N. Wiriyanukul ◽  
S. Wacharawichanant

This work studies the effect of PE-g-MA compatibilizer on mechanical thermal and morphological properties of high density polyethylene (HDPE)/titanium dioxide (TiO2) nanocomposites. The HDPE/TiO2 nanocomposites with and without PE-g-MA compatibilizer were prepared by melt mixing technique in a twin screw extruder. The results found that Young's Modulus of HDPE/TiO2 nanocomposites increased with increasing TiO2 contents. The addition of PE-g-MA compatibilizer had no significant effect on the tensile strength and stress at break of HDPE/TiO2 nanocomposites. The decomposition temperatures of HDPE/TiO2 nanocomposites before and after adding PE-g-MA compatibilizer increased with increasing TiO2 contents. The dispersion of TiO2 nanoparticles in HDPE matrix was observed by scanning electron microscope (SEM). The dispersion of nanoparticles in HDPE matrix with PE-g-MA compatibilizer was relatively good, only a few aggregates exited.


2013 ◽  
Vol 684 ◽  
pp. 75-79
Author(s):  
Esmat Jalalvandi ◽  
Taravat Ghanbari ◽  
Hossein Cherghibidsorkhi ◽  
Ehsan Zeimaran ◽  
Hamid Ilbeygi

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on tensile properties and thermal behavior of the nanocomposites. Tensile results showed an increased in modulus, tensile strength and elongation at break. However, beyond 3phr of MMT the modulus of samples decreased because the MMT particles agglomerated. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed.


2015 ◽  
Vol 735 ◽  
pp. 57-60
Author(s):  
Abdul Manan Siti Najihah ◽  
Zurina Mohamad

In this study, ethylene vinyl acetate (EVA) was blended with Polylactic acid (PLA) in order to enhance the mechanical properties of PLA. PLA/EVA blend was melt blended in a twin screw extruder and compression molding with various EVA content (0-20% by weight) and the tensile and morphological properties were examined. The morphological behaviours play an important role in influencing the tensile properties of PLA. The smaller discrete EVA particle in PLA matrix had increased the properties of PLA compared with the one with elongated morphology.


2018 ◽  
Vol 50 (7) ◽  
pp. 611-633 ◽  
Author(s):  
Ismahane Debbah ◽  
Rachida Krache ◽  
Nora Aranburu ◽  
Mercedes Fernández ◽  
Agustin Etxeberria

In this research, the effect of maleic anhydride–grafted styrene–ethylene/butylene–styrene (SEBS-g-MAH) compatibilizer on different properties of polycarbonate and poly(acrylonitrile–butadiene–styrene) (PC/ABS) blends was investigated. For this purpose, blends of PC and ABS at different ratios, without and with varying concentrations of compatibilizer, were prepared by melt compounding in a co-rotating twin-screw extruder followed by injection molding. The effectiveness of the compatibilizer was investigated by studying the microstructure and the mechanical, thermal, and rheological properties of the blends. It was found that the addition of the compatibilizer increases tensile strength, modulus, elongation at break, impact strength, complex viscosity, and thermal stability. This effect was noted at a loading of 1 wt% of compatibilizer, where enhanced interactions between the PC and ABS can be seen. Rheological methods, based on dynamic viscoelastic tests, allowed us to distinguish between emulsion-like and co-continuous morphologies and allowed an insight into the effect of the compatibilizer on the interfacial tension.


2021 ◽  
pp. 096739112110080
Author(s):  
Yelda Meyva Zeybek ◽  
Cevdet Kaynak

The main purpose of this study was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of “Filler Content”, nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of “Functional Group,” basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS structures; i.e. aminopropylisobutyl-POSS (ap-POSS), propanediolisobutyl-POSS (pd-POSS) and octasilane-POSS (os-POSS). Finally, for the third parameter of “Copolymer Compatibilization,” all specimens were compared before and after their maleic anhydride (MA) grafted copolymer compatibilization. Specimens were produced with twin-screw extruder melt mixing and shaped under compression molding. Various tests and analyses indicated that the optimum filler content for the improved mechanical properties was 1 wt%; while the optimum structure for strength and modulus was pd-POSS structure, in terms of fracture toughness it was basic POSS structure. Additional use of MA compatibilization was especially effective for the basic POSS and os-POSS particles.


2013 ◽  
Vol 739 ◽  
pp. 171-176 ◽  
Author(s):  
František Greškovič ◽  
Ľudmila Dulebová ◽  
Branislav Duleba ◽  
Janusz W. Sikora

The aim of this contribution is to test the suitability of selected types of tool steels used for manufacturing of injection molds. Experiments were realized by the simulation of adhesive wear using laboratory equipment Amsler, which allows the testing of grinding pairs. Evaluated grinding pairs consisted of tool steel and two types of roundels. Tested polymeric materials were based on pure PA6 and PBT filled with short glass fibers, prepared by mixing process in twin screw extruder. The wear of five types of tool steels were evaluated by weight decrease before and after the experiment, while changing the friction coefficient of grinding pairs, material of grinding pairs and sensing the roughness of steel before and after wear.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashwith Melkar ◽  
Ravi Kumar ◽  
Vishwa Pratap Singh ◽  
Priyanka Singh ◽  
Satyajit Samanta ◽  
...  

Abstract In the present investigation, silica and talc were used as antiblock additives with slip additive to investigate their effects on tubular quenched polypropylene (TQPP) film properties. Polypropylene (PP) powder was compounded with additives in twin-screw extruder and subsequently processed through TQPP machine to prepare the films. Tear and tensile properties [in machine direction (MD) and transverse direction (TD)] and surface properties of the produced TQPP films were investigated in terms of optics and coefficient of friction (CoF). The effect of conditioning time on CoF was also studied. Addition of slip agent alone to PP did not show any significant change in tear strength, CoF and tensile properties, whereas CoF reduced drastically by adding both slip and antiblock agents in combination. Reduction in CoF values were found to be more pronounced in the presence of silica-based antiblock compared to talc-based antiblock. Film surface morphology was further examined by field-emission scanning electron microscopy. The tear strength and the gloss of TQPP film decreased slightly in presence of only antiblock agents, but the tensile strength was found to increase. It was also found that tensile properties of TQPP films were superior in silica-based formulation, whereas tear strength was better in talc-based formulation in MD and TD.


2017 ◽  
Vol 885 ◽  
pp. 36-41 ◽  
Author(s):  
Károly Dobrovszky ◽  
Ferenc Ronkay

Blending polymers is an effective method to develop novel materials, tailoring the properties of the components. However, different morphology structures can be formed during the preparation, which could result in a wide diversity of mechanical and physical properties. The properties of polymer blends are most significantly influenced by the emerging range of phase inversion, which depends on the composition ratio and the viscosity ratio. In this paper various blends were prepared, utilizing polyethylene terephthalate (PET), polystyrene (PS) and two high density polyethylenes (HDPE), which differ in flowability. After preliminary homogenization by twin screw extruder, standard injection moulded specimen were prepared in order to present the effects of phase inversion on tensile properties, shrinkage and burning characteristics in binary polymer blends.


Sign in / Sign up

Export Citation Format

Share Document