Densification Technique of Al2O3/Al Metal Ceramics Using Powder Metallurgy Method

2018 ◽  
Vol 281 ◽  
pp. 291-296
Author(s):  
Yin Yan Ju ◽  
Ai Xia Chen ◽  
Rui Hua Wang ◽  
Fang Wang ◽  
Ming Han Xu ◽  
...  

In atmospheric environments, Al2O3 ceramics have good oxidation resistance in water, acid, and other solutions and suitable corrosion medium resistance. Al2O3 ceramics is one of the most widely used engineering ceramics. In this paper, Al2O3/Al cermet matrix composites were prepared by mixing a series of powders with aluminum and alumina powders as raw materials. The interface of Al2O3/Al cermet was observed by scanning electron microscopy. The densification process of Al2O3/Al cermet was then explored from the aspects of formulation, molding pressure, holding time, and sintering process. After mixing and dry pressing, 50 wt% Al and 50 wt% Al2O3 were appropriate for sintering. Following sintering and measuring density, density was improved under 20 MPa with a 20-minute holding time. Through a comparison of the sintering process, the interface structure was observed via scanning electron microscopy, which found that secondary sintering is conducive to improving the density of Al2O3/Al cermet.

2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


Author(s):  
Congmin Li ◽  
Yanguo Yin ◽  
Ming Xu ◽  
Jianfeng Cheng ◽  
Lan Shen ◽  
...  

Abstract The microstructures of an Al-Bi immiscible alloy and the corresponding composites containing TiC (1 wt.% and 2 wt.%) were explored for melt temperatures of 800 °C, 850 °C, and 900°C. It was demonstrated that serious coarsening and macrosegregation of Bi-rich minority phase particles occurred, which was slightly alleviated by increasing the melt temperature from 800 °C to 900 °C. By adding TiC particles, the coarsening and macrosegregation of Bi-rich minority phase particles were significantly impeded. Scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed that TiC particles were located inside and on the surface of Bi-rich minority phase particles, exhibiting heterogeneous nucleation and self-assembly behaviour. By properly increasing the holding time of the melt, finer and more uniform Bi-rich minority phase particles were obtained.


2018 ◽  
Vol 281 ◽  
pp. 156-162
Author(s):  
Wang Nian Zhang ◽  
Xi Tang Wang ◽  
Zhou Fu Wang

The influence of the light burning temperature on the sintering property of nature dolomite has been investigated by two-step sintering process in the temperature range 1500 °C to 1600 °C. The resulting bulk densities and apparent porosities of the sintered dolomite samples were examined, and analyzing the sintered dolomite by scanning electron microscopy and X-ray diffraction were performed. The results showed light burned at 850 °C for 3 h, the main phases of the dolomite with 3-5 grain size were MgO, CaO and little CaCO3, and then fired at 1600 °C,the density of sintering dolomite reached to 3.38 g/cm3, the apparent property was 1.2 %, the size of MgO grain up to 3.75 μm . However when dolomite light burned at 1050 °C for 3 h, the main phases were MgO and CaO, and then fired at 1600 °C,the density of sintering dolomite only was 3.30 g/cm3, the apparent property was 2.3 %, the size of MgO only was 3.05 μm .


2013 ◽  
Vol 648 ◽  
pp. 104-107
Author(s):  
Chuan Wei Du ◽  
Guo Zhong Li

The ordinary Portland cement as matrix materials and fly ash as a lightweight aggregate were used to prepare a new foamed cement material by chemical foaming method though adding a proper level of foaming agent, foam stabilizer, and glass fiber. The raw materials’ ratio of new foamed cement was determined through the experiment. The microstructure of bubble was analysed by electronic scanning electron microscopy. The mechanism of foam stabilizer and fiber reinforced mechanisms were explored.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2013 ◽  
Vol 650 ◽  
pp. 326-332
Author(s):  
Yang Li ◽  
Zhi Ping Sun ◽  
Rui Feng Wang ◽  
Li Yan Zou

The effect of different load, revolving speed ,content of Ti(C,N) and sintering process on the friction coefficient and wear rate of Ti(C,N)/Fe composites was investigated systemically. Besides, the wear morphology of Ti(C,N)/Fe composites were researched with an environment scanning electron microscopy(SEM),and the phase composition were studied by X-ray diffraction(XRD).The research shows that the wear mechanism of Ti(C,N)/Fe composites are abrasive wear and adhesive wear.


2012 ◽  
Vol 512-515 ◽  
pp. 1023-1027
Author(s):  
Ran Fang Zuo ◽  
Gao Xiang Du ◽  
Le Fu Mei ◽  
Wei Juan Guo ◽  
Jing Hui Liao

The main objective of this paper was to investigate the addition of iron tailing sintering brick production, in the presence of clay, coal refuses and bentonite. Mixtures containing raw materials of sintering brick and iron tailings were prepared at different proportions (up to 55 wt %), fired at 980°C. Freeze/thaw durability, drying and firing shrinkages were investigated as well as the loss on ignition, bulk density and compressive strength of the fired samples. Their mechanical and microstructure properties were also investigated by differential thermal analysis (DTA/TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the brick samples are higher than that required by the standards MU15 of GB5101-2003, up to 21.79Mpa with 40% iron tailings corresponding to its higher bulk density completely. Moreover, the results showed that it has such advantages as no lime blowing, uniform color, good freeze/thaw resistance and slight universal frost.


2011 ◽  
Vol 295-297 ◽  
pp. 581-584
Author(s):  
Li Qiang Zhang ◽  
Ping Huo ◽  
Yong Huang ◽  
Peng Li ◽  
Rong Yang

In laboratory condition, industrial zirconia and alumina were used as raw materials, whose particle size was controlled by ultrafine treatment of mechanical milling. The effects of different firing temperatures and soaking times on mechanical properties of Al2O3-based composite ceramics liner were researched. And the microstructure of samples was studied by scanning electron microscopy (SEM). The results indicate that mechanical properties of samples kept 3 h at sintering temperature of 1600°C with adding 30 wt% zirconia are the best.


2014 ◽  
Vol 1081 ◽  
pp. 313-317
Author(s):  
Yan Wen Lu ◽  
Yu Ge ◽  
Yue Feng Tang

A one-step carbon thermal method was used to prepare LiFePO4/C particles by using normal Fe2O3, LiH2PO4and sucrose as raw materials. The effect of H2content in the sintering atmosphere of N2on the morphology and the electrochemical performance were investigated. LiFePO4/C materials were characterized by X-ray diffraction, scanning electron microscopy and the elemental analyzer. The results show that the precursor sintering under the atmosphere of 8%H2+N2exhibits the highest electrochemical capacity (162.3 mAh/g at 0.1C) .


2011 ◽  
Vol 282-283 ◽  
pp. 129-132
Author(s):  
Chang Su ◽  
Jing Kun Yu ◽  
Ning Ning Lv

For investigating the reaction behavior of phosphorus in CaO–SiO2–FeOx low basicity slag, the CaO–SiO2–FeOx slag containing various amount of CaO particles was heated at 1623K and 1673K, respectively for 10 to 600s, and the products formed at the interface of the CaO particles and molten slag were observed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX). The research results showed that the solid solution containing P2O5 increased with the increasing of the heating temperature, and the formation of condensed phase was promoted by increasing the holding time and the CaO solid proportion.


Sign in / Sign up

Export Citation Format

Share Document