Influence of Structure and Composition of the Fibrous Materials on the Performance Characteristics of Thermal Protection Structures with Combined Functions

2018 ◽  
Vol 284 ◽  
pp. 65-70 ◽  
Author(s):  
I.V. Cherunova ◽  
L. Osipenko ◽  
M. Stenkina

In the article research results are presented, the aim of which is to provide high quality and reliability while using heat-protective structures for machines and people. Textile materials perform important function contacting moisture in the atmosphere. Results of moist environment textile structure and properties research are also presented here. It was established that multilayer structure with free elementary cells, including knitwear, for the purposes of barrier maintenance of moisture level is not sufficient. Based on the performed experimental research, new characteristics and properties pattern defining behavior of materials while contacting liquids (wetting, capillarity, moisture, hygroscopy) are established. Recommendations relating to groups and samples of textile materials are given. The research was made in Don State Technical University within the framework of State Assignment of the Ministry of education and science of Russia under the project 11.9194.2017/BCh.

2018 ◽  
Vol 226 ◽  
pp. 02027
Author(s):  
Irina Cherunova ◽  
Elena Yakovleva ◽  
Ekaterina Stefanova

The article represents trends and results of world investigations for safety of textile materials for humans and environment. The algorithm for identification of potential influence vector of chemical emissions from textile and the environmentally aimed methods based on the alternative chemical substances for textile wet processing were presented. Using the procedure for oleophobic effect determination, the oil resistance levels of a number of modern fabrics for clothes were established. The experimental research results of the oil products concentration in the textile materials after chemical treatment based on the method of the capillary gas chromatography were presented. It was found out that hydrocarbons from C14H30 Tetradecane to С36Н74 Hexatriacontane are the main components with high level of contaminants concentration. The average values of hydrocarbon concentration on the cleaned up samples for the main areas of the clothe surface were determined. Accumulation of residual contaminations, based on saturated hydrocarbons (С17Н36 – С25Н52 block) and related special-purpose clothes areas, was identified. Recommendations for target-oriented correlation of the clothes protective properties were proposed. UWO (unified work order). The research was made in Don State Technical University within the framework of State Assignment of the Ministry of education and science of Russia under the project 11.9194.2017/BCh.


2021 ◽  
Vol 11 (11) ◽  
pp. 5247
Author(s):  
Irina Cherunova ◽  
Nikolai Kornev ◽  
Ekaterina Lukyanova ◽  
Valery Varavka

The modern technology of heat-protective clothing is increasingly aimed at maintaining the active function of materials. Adding heat-preserving components into the volume of heat-insulating fibrous materials changes their structure and properties. In this article, the methods of forming the structure of multi-component insulants with heat-preserving components, as well as the study of structural and thermophysical properties, are presented. Composite textile materials were used in this study, namely a 0/30/50/100% Outlast textile (based on polyester fleece, 70%) + Termofiber (fiber-insulated polyester material, 100%). Based on the research, we established the structural parameters of Termofiber fibrous canvas and the Outlast textile. The study of the thermal conductivity of complex combined insulation materials was performed for different temperature conditions (up to +25 °C) and for the proportion of the heat-accumulating textile components. Based on the obtained research results for the development of complex materials from Termofiber + the Outlast textile, the fraction of the Outlast textile component should be limited to no more than 40% for textile shells in clothing that are operated at a temperature of +5 °C or below. Further conditions for determining the composition of the studied materials for clothing can be settled by taking into account the density of the materials, the mass, and the general thermal insulation of clothing.


2020 ◽  
Vol 992 ◽  
pp. 916-921
Author(s):  
I.V. Cherunova ◽  
A.A. Kovaleva ◽  
E.V. Nazarenko

In the article research results are presented, which aim to provide evaluation of thermal protection properties of volume textile materials. However, as a result of experts wearing it has been revealed that by their operational performance their characteristicsare quite high to such materials: Holofiber, Tinsulate, Arctic, etc. At the present time to research thermal protection properties of sewing materials methods are used that can be divided into 2 groups: Methods based on the principle of steady heat mode and Methods based on the principle of unsteady (regular) mode. New device has been developed which allows to simplify both the schematic diagram and the methodological approach to experimental evaluation of thermal protection properties of volume textile materials. The corresponding experimental research were held based on the developed bicalorimeter. Study results allowed to establish heat insulation material «ArcticP» possesses the highest thermal resistance.It is located with its metallized coating facing outside. High values of thermal protection properties of this material are explained by availability of metallized coating from outer side which ensures partial heat reflection.. The research was made in Don State Technical University within the framework of State Assignment of the Ministry of education and science of Russia under the project 11.9194.2017/БЧ.


Author(s):  
I. V. Cherunova ◽  
A. M. Korinteli ◽  
M. P. Stenkina ◽  
T. Yu. Lesnikova

The article presents data on the influence of the marine environment on textile materials. Aggressive components of the marine environment that contact the surface of clothing (sea salt and oil) are justified. Sea salt is an integral part of seawater. It accumulates in the clothing structure. Oil is included in the components of seawater in emergency situations at offshore oil and petroleum products and sea transport facilities. This leads to a change in the properties of textile materials, which depend on the concentration of aggressive components in the structure of textile materials. The active concentration of aggressive components in textiles is determined by its ability to absorb liquid. Specific features of changing the volume of various textile fibers during interaction with liquids are established. Structure of sea salt and the chemical composition of oil. This determines the change in the properties of the textile in contact with them. The structure of sea salt and the chemical composition of oil is justified. This determines the change in the properties of textiles. As a result of the systematization of modern data on clothing materials that are used in marine technology, the information base of the leading modern fibrous materials for protective clothing was formed. The reference materials for research are allocated. It was found that the presence of sea salt in a moist contact medium with a surface of a special fabric on a cotton basis for all samples of materials led to a decrease in their capillarity. It has been established that packages of materials based on mixed-fiber fabrics have permeability parameters with respect to crude oil below the cotton garment surfaces. The application in combination with such materials of holofiber insulation reduces the level of saturation of clothing with the liquids examined. The article presents experimental data on the permeability of sea water and oil in special materials for clothing. The work was supported by the Ministry of Education and Science of Russia in the Don State Technical University within the framework of the State task 2017-2019 under the project No. 11.9194.2017/БЧ.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1067
Author(s):  
Behnaz Mehravani ◽  
Ana Isabel Ribeiro ◽  
Andrea Zille

Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold nanoparticles (AuNPs). Therefore, this review highlighted the most used methods for AuNPs preparation and the current studies on the topic in order to obtain AuNPs with suitable properties for antimicrobial applications and minimize the environmental concerns in their production. Reporting the detailed information on the functionalization of fabrics, yarns, and fibers with AuNPs by different methods to improve the antimicrobial properties was the central objective. The studies combining AuNPs and textile materials have opened valuable opportunities to develop antimicrobial materials for health and hygiene products, as infection control and barrier material, with improved properties. Future studies are needed to amplify the antimicrobial effect of AuNPs onto textiles and minimize the concerns related to the synthesis.


2020 ◽  
Vol 992 ◽  
pp. 439-444
Author(s):  
I.V. Cherunova ◽  
S.S. Tashpulatov ◽  
S.V. Kurenova

In the article research results are presented, which aim to provide treated textile electrostatic properties study. In the article research results are presented, which aim to provide find out abilities of an anti-electrostatic treatment and binding agents for it in treatment of special textile materials and their dependance from modes of operating textile washing. Results of determine a composition and abilities of a functional impregnation; develop a method to study values of electrostatic field for tribocharging conditions of textile materialsare; experimental studies of electrostatic values of materials with functional treatment depending on operating washing modes also presented here. Study results allowed to establish efficiency of the proposed combination of anti-electrostatic active composition based on 5 % solution of dialkyldimethylammonium chloride with a binding agent with the effect to preserve the treatment in the material structure and content of which is 4 % in application of textile fabric with widely used fiber content (cotton 53 %, polyester + oil and water-proofing finish). Acrylic dispersion is stable film-forming component suitable in preserving anti-electrostatic treatment on the surface of a textile material. The research was made in Don State Technical University within the framework of State Assignment of the Ministry of education and science of Russia under the project 11.9194.2017/BCh.


2019 ◽  
Vol 50 (5) ◽  
pp. 428-432 ◽  
Author(s):  
N. V. Borisova ◽  
S. M. Zakirova ◽  
N. N. Krivosheina

2003 ◽  
Vol 766 ◽  
Author(s):  
Do Y. Yoon ◽  
Hyun Wook Ro ◽  
Eun Su Park ◽  
Jin-Kyu Lee ◽  
Hie-Joon Kim ◽  
...  

AbstractPolysilsesquioxanes (PSSQs) with the empirical formula (RSiO3/2)n have become very important as low-dielectric insulators for copper interconnects in the next-generation logic devices, but the detailed structure-property relationships were completely lacking. We have investigated the microstructure and functional properties of PSSQs with varying alkyl substituents and also PSSQ copolymers. As a result, significant advances have been made in the scientific understanding of PSSQ structures and significant improvements of key properties such as the crack resistance, mechanical modulus and hardness, and incorporation of nanometer-sized (<4 nm) porosity for ultra-low dielectric constants (<2.0).


2019 ◽  
Vol 945 ◽  
pp. 938-943
Author(s):  
I.A. Sheromova ◽  
A.S. Zheleznyakov

The object of research of the article is the methodological and technical support for the process of studying the characteristics of ergonomic properties of materials used in the manufacture of garments, and the subject – the method for the determination of textile materials’ air permeability. The aim of the work is to simplify the method for determination of fibrous materials’ air permeability and to expand the technological capabilities of its instrument base while increasing the flexibility of the control procedure. To achieve this goal, the tasks related to the analysis of existing methods and technical means, and the development of a new method for determining the air permeability of textile materials were solved. The principal difference in the developed method is the possibility to conduct studies on the air permeability of textile materials at different levels of pressure drop on both sides of the sample, and not only in accordance with the standardized requirements. An additional advantage of the method is the possibility to create an online electronic database on the properties of materials. In comparison with analogues, the proposed method for the determination of air permeability ensures the accuracy and reliability of the data obtained, as well as facilitates the testing process by automation.


1987 ◽  
Vol 1 (7) ◽  
pp. 618-620
Author(s):  
G A Petrunin ◽  
A M Lyubchik ◽  
N F Chugai ◽  
E A Asnis ◽  
M M Nerodenko

Sign in / Sign up

Export Citation Format

Share Document