Comparative Characteristics of Free-Machining Steels of Cr-Mo Type

2020 ◽  
Vol 299 ◽  
pp. 670-675
Author(s):  
A.V. Ryabov

The work investigates the properties of lead-free free-machining steel grade A30KhMAR, containing BN inclusions, in comparison with the base Cr-Mo steel 30KhM, lead-bearing AS30KhM, lead-calcium-bearing ASTs30KhM, calcium-bearing ATs30KhM, bismuth-calcium-bearing AVTs30KhM and tin-bearing AО30KhM. Effect of bismuth, calcium, lead, tin and boron nitride inclusions on steel susceptibility to temper brittleness and cold brittleness is studied. Contamination of steels with non-metallic inclusions is estimated. End-quench hardenability curves of the test steel A30KhMAR are obtained. Free-machining Cr-Mo structural steel, containing low-melting elements, has ASTM grain size of the number of 7–8. Hardenability and austenite grain size are satisfactory compared to the base steel 30KhM. Mechanical properties of the test steel in longitudinal direction (ultimate and proof stress, specific elongation, reduction in area, impact toughness, hardness) were also determined. It was found that bismuth, calcium, lead, tin, boron and nitrogen (in the form of boron nitride inclusions) within the studied limits do not have negative effect on mechanical properties of heat-treated ASTs30KhM, ATs30KhM, AVTs30KhM, A30KhMAR and AО30KhM steels, and the values of strength, plasticity and toughness characteristics satisfy the requirements of GOST standards for the base steel 30KhM and lead-bearing steel AS30KhM.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2019 ◽  
Vol 944 ◽  
pp. 357-363
Author(s):  
Xiao Dong Zhang ◽  
Dian Xiu Xia ◽  
Shou Ren Wang

The effect of austenitizing temperature on the quenching microstructure and properties of 51CrV4 steel was studied. The results show that with the increase of austenitizing temperature, the austenite grains grow gradually. After quenching, the hardness increased first and then decreased, and the strength increased first and then decreased after tempering at 460°C. When the austenitizing temperature was 880°C, the austenite grains were fine and uniform, about 16μm, the martensite structure was dense, the strength and hardness reached maximum. When the austenitizing temperature was 910°C, the decarburization phenomenon was obvious, and the strength, hardness and plasticity of the test steel decreased obviously. When the austenitizing temperature exceeded 910°C, the austenite grains grow sharply and some grains were abnormally coarse. The austenite grain size reached 20μm and the microstructure was coarser at austenitizing temperature of 950°C. Therefore, in order to ensure uniform grain size and no decarburization under the premise of complete austenitization, the best austenitizing temperature of 51CrV4 steel for good properties is 880°C.


2002 ◽  
Vol 43 (5) ◽  
pp. 916-919 ◽  
Author(s):  
Jorge Otubo ◽  
Fabiana C. Nascimento ◽  
Paulo R. Mei ◽  
Lisandro P. Cardoso ◽  
Michael J. Kaufman

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 577 ◽  
Author(s):  
Sebastian Härtel ◽  
Birgit Awiszus ◽  
Marcel Graf ◽  
Alexander Nitsche ◽  
Marcus Böhme ◽  
...  

This paper examines how the initial austenite grain size in quench and partitioning (Q-P) processes influences the final mechanical properties of Q-P steels. Differences in austenite grain size distribution may result, for example, from uneven heating rates of semi-finished products prior to a forging process. In order to quantify this influence, a carefully defined heat treatment of a cylindrical specimen made of the Q-P-capable 42SiCr steel was performed in a dilatometer. Different austenite grain sizes were adjusted by a pre-treatment before the actual Q-P process. The resulting mechanical properties were determined using the upsetting test and the corresponding microstructures were analyzed by scanning electron microscopy (SEM). These investigations show that a larger austenite grain size prior to Q-P processing leads to a slightly lower strength as well as to a coarser martensitic microstructure in the Q-P-treated material.


2016 ◽  
Vol 666 ◽  
pp. 207-213 ◽  
Author(s):  
Tao Jiang ◽  
Hongji Liu ◽  
Junjie Sun ◽  
Shengwu Guo ◽  
Yongning Liu

Sign in / Sign up

Export Citation Format

Share Document