scholarly journals Influence of Dicalcium Silicate and Tricalcium Aluminate Compounds in Different Local Cement Brands on the Compressive Strength of Normal Concrete

2021 ◽  
Vol 318 ◽  
pp. 59-69
Author(s):  
Anthony N. Ede ◽  
Oluwarotimi Michael Olofinnade ◽  
Akpabot Ifiok Akpabot ◽  
Solomon O. Oyebisi ◽  
David O. Nduka

The mould-ability of concrete into intricate forms and the versatility of its constituent materials has made concrete to be the most preferred construction material. However, in developing nations such as Nigeria, poor quality of concrete is listed among the common causes of building collapse. Thus, this study investigated the effects of chemical compounds of four commonly used local ordinary Portland cement brands on the compressive strength of normal concrete. The cement was labelled brands A, B, C, and D, respectively, while all the other constituent materials remained constant in this study. The HACH DR 200 direct reading spectrophotometer method was used to analyze the composition of the oxide in each of the cement samples, while the Bogue composition formula was used to estimate the compound compositions of the cement samples. A designed mix proportion of 1:2:4 (cement: sand: granite) at water-cement ratio (w/c) of 0.6 was used to produce the concrete with an expected target strength of 25 N/mm2. Also, the initial and final setting time of the cement samples and the workability of the concrete mixes were determined. Forty-Eight (48) numbers cube samples were cast and tested for compressive strength at 3, 7, 14, and 28 curing days, respectively, using a 150 mm concrete cubes. The result shows the setting time of the cement samples to be within an acceptable period. Also, results indicated that the cement brands have a significant percentage of Tricalcium Silicate (C3S) content and low percentage Dicalcium Silicate (C2S) content responsible for faster hydration rate and higher early strength gain of the concrete. However, it was observed that a higher percentage of Tricalcium aluminate (C3A) leads to higher strength gain from 7 to 28 days of curing age.

2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


Author(s):  
Tamrin Rahman ◽  
Mardewi Djamal ◽  
Juli Nurdiana ◽  
Amirul Mirza Ghulam

During the casting in a warmer tropical temperature, a setting time delay is required to maintain the workability of the concrete, commonly achieved by the addition of admixtures i.e. silica fume (SF), fly ash (FA), and Plastrocrete®. However, high sugar content Coca-Cola in niche conditions is proposed as an ingredient for delaying concrete setting time in combination with conventional admixtures. This research aims to compare the setting time of admixtures from Coca-Cola and Plastocrete® RT6 plus in concrete mixing with control data of concrete mixed with SF or FA. The second aim is to measure the compression strengths between combinations of Coca-Cola and Plastocrete® RT6 plus. Concretes were produced with admixtures of SF, FA, Plastocrete® RT6plus, or Coca-Cola. The concrete used to control was f'c20 and f'c 25, while other concrete mixes were produced with the addition of Coca-Cola at 0.15% from the weight of cement at variation of moisture treatments. The first method to produce concrete (f'c20+Plas0.23%+Cola0.15% and f'c25+Plas0.23%+Cola0.15%) did not employ water reduction. The second concrete productions (f'c25+Plas0.46%+Cola0.15% and f'c25+Plas0.46%+Cola0.15%) reduced the addition of water at 8.8% (v/w). The first concrete production method had a setting time 44% longer than control. The reduced water concrete in the second productions had a setting time 34% longer than control. Meanwhile, the Plastocrete® RT6 Plus admixture with the reduced water delayed the concrete setting time by 26% longer than control. The delayed setting time of Plastocrete® RT6 Plus admixture with reduction of water was shorter than in the treatment with Coca-Cola. The combination of the addition of Coca-Cola with Plastocrete® RT6 plus by reducing the amount of adding Coca-Cola to 0.10% with Plastocrete® RT6 plus can delay concrete setting time by 51% longer than normal concrete and increase concrete compressive strength by 13% higher than normal concrete. Mixing Coca-Cola with Plastocrete® RT6 plus not only provided an optimal delay effect on setting time but also significantly increase the compressive strength that was desired during the casting in warm tropical weather applied in building construction of Mulawarman University, Samarinda, Indonesia.


2018 ◽  
Vol 19 ◽  
pp. 1-11 ◽  
Author(s):  
Mehmet Serkan Kirgiz

This review research aims to discuss the results obtained researches on cement containing pure cement, pulverised fly ash, and nanoparticles, in order for eliminating negative side effects underlie the substitution of by–products for pure Portland cement. Nanoparticles (NP) used in these researches are nanoTiO2, nanoSiO2, nanoCaCO3, fibers of carbon nano tube (CNT), nanolimestone (nanoCaCO3), nanoZrO2, nanoclays, and nanometakaolin (nMK) for improving properties of cement systems. Published manuscripts explains two methods regarding on the usage of nanoparticles for cement system: blending and ultrasonication for dispersion of nanoparticles. However, differences between blending and ultrasonication methods suggested by various researchers are also discussed. Experiments reported these papers include the water demand, the density, the setting–times, the heat of hydration, the fluidity, the compressive strength and the flexural strength. According to these results, nanoparticles increase the water demand and heat of hydration of cement; it decreases the density and fluidity for cement mortars, evidently. The most effective nanoparticles on early compressive and flexural strengths are fibers of carbon nano tube and nanoCaCO3. These papers also point effects of these nanoparticles on the strength gain of cement. This review paper inform us until Effect of nanomaterial on water demand and density section in this Part I. Second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section.


2019 ◽  
Vol 24 ◽  
pp. 37-44 ◽  
Author(s):  
Mehmet Serkan Kirgiz

The second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section. Experiments reported include the setting–times, the heat of hydration, the compressive strength gain, and the flexural strength gain in the current article. According to the result, nanoparticles, especially the GNP, increase the heat of hydration of cement, and accelerate the time of setting evidently, both initial and final setting-time. The most effective nanoparticle on early compressive strength gain and flexural strength gain is the GNP. The article also points the effects of the nanoparticles on the strength gain of cement comprehensively. Consequently, the prominent cement technology can use the nanoparticles dispersed in liquid by ultrasonication method to increase the properties of cement based materials effectively.


2019 ◽  
Vol 12 (2) ◽  
pp. 101
Author(s):  
Tri Septa A.D., Qomariah, Akhmad Suryadi

The use of steel smelting waste industry is used to reduce the waste overflow at the site. The waste steel smelting industry called blast furnace slag (BFS) used as a substitution for cement in a concrete mixture in a Laboratory Material Test, Civil Engineering State Polytechnic of Malang. The purpose of this analysis is to: 1) Test the workability of normal concrete and concrete with BFS; 2) Find out compressive strength of each concrete; 3) Compare the price to both concrete in the construction of building.The required data were of gradation of aggregate, water content of aggregate, density of aggregate, absorption of aggregate, bulk density of aggregate, fineness of cement, normal consistency of cement, cement setting time, compressive strength of mortar cement, and the price of building materials Surabaya 2016. SNI 03-2834-2000 method was applied with variations BFS substitute of cement are 0%, 10%, 15%, 20%, and 30% BFS and the planned compressive strength obtained at 28 days of 300 kg/cm2.The analyses result in 1) The workability of each concrete: 5.75cm of normal concrete (0%), 3.45cm, 3.15cm, 3.1cm, and 3.05cm respectively with BFS concrete; 2) The compressive strength of each concrete at 28 days: 235.56kg/cm2 of normal concrete, 105.33kg/cm2, 138.96kg/cm2, 127.26kg/cm2, and 94.52kg/cm2respectively with BFS concrete; The use of BFS cannot be applied to the concrete mixture, because of low compressive strength; 3) For the price of concrete materials per m3 are IDR 999.472,05 of normal concrete, IDR 996.926,78 for 10% with BFS, IDR 995.654,93 for 15% with BFS, IDR 994.381,50 for 20% with BFS, and IDR 991.837,80 for 30% with BFS. Keywords: BFS, workability, compressive strength


Author(s):  
Agboola Shamsudeen Abdulazeez ◽  
Amina Omolola Suleiman ◽  
Simdima Gabriel Gideon ◽  
Solomon Wutong Poki

- Presently researches all over the world is concentrating on alternative materials as partial cement replacement in concrete production. The use of pozzolanic material in concrete is becoming increasingly important because of the need for more sustainable cementing products. Volcanic ash is a form of natural pozzolan and has a chemical composition comparable to other supplementary cementitious materials. In this paper, volcanic ash was used to partially replace cement in the ratio of 0%, 5%, 10%, 15% and 20% by volume in concrete and cured in H2SO4 and MgSO4 environment. 28-day target strength was adopted and concrete tested at 7, 14, 28 and 56 days’ hydration period. Specific gravity, bulk density and setting time test on volcanic ash were carried out. Fresh concrete tests such as slump and compacting factor test were carried out along-side hardened concrete tests like compressive strength and split tensile strength. The result shows that the maximum compressive strength at 28 days was at 0% control concrete, while at 56 days the maximum strength was observed at 10% replacement of cement with volcanic ash and it is considered as optimum percentage replacement.


2021 ◽  
Vol 1 (1) ◽  
pp. 15-19
Author(s):  
Vidya Sagar Khanduri ◽  
Shivek Sharma

The objective of this research is to enhance the properties of concrete by using Fly Ash as a partial substitution of concrete. Tests carried out on cement are Initial and Final setting time and on aggregates, specific gravity and sieve analysis. The mean target strength with given compressive strength at 28 day and quality control level is calculated. Concrete blend proportions for the first tryout mix is calculated and casting of cube of 15mm size with curing for 28 days, and then test for strength using UTM/CTM machines. C-S-H gel as well as Calcium hydroxide as bi product when reacts with water. C-S-H gel has an ability to keep the ingredients together by making a proper bond whereas lime which is freely available can react with atmospheric moisture and cause efflorescence. In such cases if we use fly ash, it reacts with free lime and produces C-SH gel again and water as bi product. We have used Fly ash as a partial replacement of cement with variation of fly ash in percentage. In this study fly ash add in increment of 5%, 10%, 15%, 20%, 25%, 30% and 35% replacement of cement which has shown satisfactory results in the strength of the concrete. Fly Ash improved the workability of the concrete, decreases the bleeding, surface finish and increases the cohesiveness. Compressive strength is comparatively increased. The initial strength of concrete with fly ash has lower strength but acquires higher strength after 56 days; which shows that more the nos. of curing days more will be the strength. Thus, it can be used in areas of construction such as dams, pavements etc.


Author(s):  
Vidya Sagar Khanduri ◽  
◽  
Shivek Sharma ◽  

The objective of this research is to enhance the properties of concrete by using Fly Ash as a partial substitution of concrete. Tests carried out on cement are Initial and Final setting time and on aggregates, specific gravity and sieve analysis. The mean target strength with given compressive strength at 28 day and quality control level is calculated. Concrete blend proportions for the first tryout mix is calculated and casting of cube of 15mm size with curing for 28 days, and then test for strength using UTM/CTM machines. C-S-H gel as well as Calcium hydroxide as bi product when reacts with water. C-S-H gel has an ability to keep the ingredients together by making a proper bond whereas lime which is freely available can react with atmospheric moisture and cause efflorescence. In such cases if we use fly ash, it reacts with free lime and produces C-SH gel again and water as bi product. We have used Fly ash as a partial replacement of cement with variation of fly ash in percentage. In this study fly ash add in increment of 5%, 10%, 15%, 20%, 25%, 30% and 35% replacement of cement which has shown satisfactory results in the strength of the concrete. Fly Ash improved the workability of the concrete, decreases the bleeding, surface finish and increases the cohesiveness. Compressive strength is comparatively increased. The initial strength of concrete with fly ash has lower strength but acquires higher strength after 56 days; which shows that more the nos. of curing days more will be the strength. Thus, it can be used in areas of construction such as dams, pavements etc.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB


Sign in / Sign up

Export Citation Format

Share Document