Analysis of Sound Reduction and Strong Drag Composite Concrete Fibers Gedebok Banana Results Delignification with Sodium Hydroxide Solvent (Naoh)

2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB

2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Muhammad Syahmi Hamizol ◽  
Puteri Sri Melor Megat-Yusoff*

The focus of this paper is to obtain a continuous cellulose fiber (CCF) from mengkuang leaves of the pandanus genus using chemical extraction process and to measure its tensile properties. The higher the concentration of sodium hydroxide (NaOH) and the longer soaking times employed during the alkaline treatment of the mengkuang leaves, the higher the cellulose content extracted. The highest tensile strength of 520 MPa was measured for single CCF treated with optimum extraction parameters of 2% NaOH for 60 minutes. Amount of cellulose content of the extracted fiber showed an inverse relationship with the fiber’s tensile strength. The removal of lignin and hemicellulose content during extraction process may have caused the reduction in the fiber’s tensile strength.


2020 ◽  
Vol 5 (2) ◽  
pp. 59-71
Author(s):  
Sri Devi Nilawardani

Title: The Effect of Using Mediteran Soil as Cement Substitution Materials in Compressive Strength and Tensile Strength of Concrete Concrete is a composite material (mixture) of cement, fine aggregate, coarse aggregate, and water. The potential of limestone in Indonesia is very large, reaching 28.678 billion tons which is the main ingredient in the cement manufacture. In the long run it will be depleted because it is a non-renewable natural resources. So to reduce the use of limestone the utilization of Mediteran soil as a substitution for some cement in the manufacture of concrete is required. The initial idea is based on the chemical composition contained in the Mediteran soil almost identical to the cement, which is carbonate (CaO) and silica (SiO2). The purpose of this research is to reveal the influence of substitution of Mediteran soil by 20% and 40% in the compressive strength and tensile of the concrete at age 3, 7, 14, and 28 days with the number of test specimen each 3 pieces on each variation in 10cm x20cm cylinder with planning of concrete mixture refers to SK SNI method T-15-1900-03. The type of research used is quantitative with the experimental method of laboratory test and data analysis of comparative method and regression. The results show that compressive strength and tensile strength of concrete using Mediteran soil substitution comparable to  the strength of normal concrete with dry treatment. In the composition of 20% Mediteran soils decreased by 51.35% or 7.9 MPa (compressive strength) and 30.60% or 0.93 MPa (tensile strength). While the composition of 40% Mediteran soil decreased by 43.78% or 9.13 MPa (compressive strength) and 2.24% or 1.31 MPa (tensile strength).  


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2014 ◽  
Vol 1004-1005 ◽  
pp. 1516-1522
Author(s):  
Xi Xi He ◽  
Qing Wang

Silica fume (SF) modifies interfacial transition zone between cement paste and aggregate at the micro level. Properties of both fresh and hardened silica fume concrete are affected significantly compared to normal concrete. Experiments indicate that concretes become more cohesive and less prone to segregation in the presence of silica fume, moreover, performance of water demand, setting of time, plastic shrinkage varies respectively from concretes without silica fume. Obvious mechanical enhancement of concrete is observed in the aspects of compressive strength tensile strength, elastic modulus as well as fracture toughness.


2019 ◽  
Vol 9 (1) ◽  
pp. 15-22
Author(s):  
Era Rizky Hasanah ◽  
Agustin Gunawan ◽  
Yuzuar Afrizal

Concrete has a high compressive strength, but it is low to tensile strength. The pinang skin fiber and wood powderuse to increase the tensile strength. The purpose of this research is to know the effect of addition toward tensile strength and addition percentage variation in concrete that will get the highest tensile strength.The cylindrical specimens with size of 30 cm high and 15 cm diameter to 20 specimens, they are 4 sample of normal concrete and 16 sample of variation oncrete. The addition of pinang skin fiber and wood powder with variation of 0.25%, 0.5%, 0.75%, and 1% of the weight volume of the specimen with used 50% pinang skin fiber and 50% wood powder.The mixture of concrete uses water cement ratioof 0.5 and 60-100 mm slump.The test specimen is immersed for 26 days and the concrete tensile strength test conducted after the concrete at 28 days adding 7 days for drying.The result of this research shows that the variation concrete of 0.25% and 0.5% have increased of tensile strength than the normal concrete as 12.272% and 4.369%. Beside that for the variation concrete of 0.75% and 1% have decreased as 5.044% and 11.929%. The increase of tensile strength value of optimal concrete is found in variation 0.25% that is 12.272% from normal concrete.


2018 ◽  
Vol 12 (1) ◽  
pp. 441-457 ◽  
Author(s):  
Sahar Jabbar Alserai ◽  
Wissam Kadhim Alsaraj ◽  
Zina Waleed Abass

Introduction:One of Iraq’s major environmental problems is a large amount of residual iron produced by the industrial sector, which is stored in domestic waste and landfills. The reuse of construction waste gives two aims, the first is to remove large quantities of pollution resulted from these waste, the second provides cheap resources for concrete aggregates.Methods:This study conducted a series of experiments and tests to test the feasibility of reusing this iron slag and recycled concrete aggregate in concrete mixtures. Different percentages of iron filings were used in the concrete mixture at 0, 0.5%, 0.75% and 1%. Tests are done to evaluate the quality of cast iron concrete which include compressive strength (fcu), flexural strength (fr), indirect tensile strength (ft), SEM and modulus of elasticity (Ec) for four sustainable concretes.Results and Conclusion:The results show that the iron filings amount is increased to 1.0% which resulted in increasing percentage of compressive strength (fcu), flexural strength (fr), indirect tensile strength (ft), SEM and modulus of elasticity (Ec) with 10%, 32%, 42% and 11% for Geopolymer Concrete with Recycled Aggregate (GCRA), 9%, 52%,31% and 17% for geopolymer concrete with natural aggregate (GCNA), 10%, 19%,26% and 12% for Normal Concrete with Natural Aggregate (NCNA) and 23%, 19%, 67% and 14% for Normal Concrete with Recycled Aggregate (NCRA), respectively.


2019 ◽  
Vol 7 (1) ◽  
pp. 24-29
Author(s):  
A. Ajwad ◽  
N. Khadim ◽  
Abdullah ◽  
U. Ilyas ◽  
M. U. Rashid ◽  
...  

In this research, fine and coarse aggregates present in the concrete are replaced with steel dust and shred-like steel fibres, respectively in different ratios and its effect on the properties of concrete is studied. Eight batches of concrete were mixed, each with the mix proportion of 1:2:4 and water cement ratio of 0.52. Batch A was of normal concrete. In batches B, C, and D, 5%, 10%, and 15% of sand was replaced with steel dust. In batches, E, F, and G, 2%, 5%, and 8% of coarse aggregate were replaced with steel fibres. In the last batch H, both 5% of sand and 5% of coarse aggregate were replaced with steel fine and steel fibres respectively. British as well as American standards were followed during the research. Slump test was performed in a fresh state of each mix to find the effect of these replacements on workability. 12 cubes of 150mm x 150mm x 150mm for compressive strength test and 12 cylinders of 150mm diameter and 300mm height of each, for tensile strength test were made for each batch to check these strength after 3, 7, 14, 28 days. It was found that the workability of fresh concrete decreases while density of fresh as well as hardened concrete increases with these replacements. It also results in an increase in initial compressive strength and a decrease in final compressive strength as compared to those of normal concrete. As far as tensile strength is concerned an increase in initial as well as final strength was observed.


2012 ◽  
Vol 476-478 ◽  
pp. 1652-1656
Author(s):  
Weerapol Namboonruang ◽  
Rattanakorn Rawangkul ◽  
Wanchai Yodsudjai ◽  
Nutthanan Suphadon ◽  
Prayoon Yong-Amnuai

This work studies the development of using the Mae-Khong Flat Shape Alluvial Gravel which mostly found in Mae-Khong River as the raw material of the concrete combinations (GVCM) to produce the non-bearing thin wall. There are three main material properties investigated: the compressive strength, the tensile strength and the thermal conductivity. All properties are also compared with limestone concrete (LSC) which is widely used in normal concrete works. Results show that all properties of both materials increase with increasing cured time. For GVMC, the compressive strength increases as 6.66% for cured time from 28 to 180 days. The ratio of compressive strength to tensile strength is 8.69 compared with LSC which the value is 8.89. These can confirm that GVCM has the enough quality to produce the non-bearing materials according to the Thai community product standard.


This paper deals with M25 Concrete mix in which replacing Natural Sand by the Manufacturing Sand of 35% and 65% at Cement by Metakaolin of 0, 5, 10, 15 and 20 percentages is compared with concrete had cement with Metakaolin at different percentages without replacement of natural sand .Workability is determined for Concrete and Cylindrical specimens of 150mm*300mm of size are casted to test Concrete properties such as Split Tensile strength(STS) and Compressive Strength(CS) of Concrete. These specimens are placed under curing of 7days, 28days and 60days; after that time placed under testing and compared the results with Normal Concrete.


Sign in / Sign up

Export Citation Format

Share Document