Development of High-Strength Foamed Concrete Compositions

2021 ◽  
Vol 320 ◽  
pp. 186-190
Author(s):  
Eva Namsone ◽  
Genadijs Sahmenko ◽  
Elvija Namsone ◽  
Aleksandrs Korjakins

Unlike traditional materials, the development of high-performance foamed concrete with a compressive strength of up to 20 MPa and a density of up to 1400 kg/m3 allows the use of foamed concrete as a constructive material with additional functions including good thermal insulation properties, sound insulation and capillary porosity needed to ensure hydrothermal conditions. Unlike autoclaved aerated concrete, foamed concrete can also be used in monolithic construction.The studies of high strength foamed concrete were performed by using mostly local mineral components and mixing technology by using planetary activator which provides a fundamentally new mixing mode that combines intensive mixing, foaming and activation of components. To realize the experimental part of the research, turbulence type foamed concrete mixer SPBU-LUKS was used.

2012 ◽  
Vol 204-208 ◽  
pp. 3974-3977
Author(s):  
Xin E Li

Functions of the wall and some of wall materials are introduced. Basalt filaments possess excellent properties with high strength, high temperature resistance, corrosion resistance, small hygroscopicity, small thermal conductivity and high sound absorption coefficient. High performance basalt fabrics can be gelatinized into compound cementitious materials with cement or gypsum. The performance of basalt compound boards mainly rely on the performance of basalt filaments. So basalt compound boards possess excellent characteristics with light-weight, high strength, fire prevention, sound insulation and heat preservation. It is green initiative and easy construction as new wall materials. Basalt compound cementitious materials possess good application prospect in the wall materials along with the development of production technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Marcin Kozłowski ◽  
Marta Kadela

Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.


2019 ◽  
Vol 136 ◽  
pp. 04071
Author(s):  
Zhao-yan Tian ◽  
Qun Xie

Concrete sandwich panel is a kind of building element with the characteristics of light weight, high strength, suitability for standardized production, meanwhile it has the multi-function of heat preservation and sound insulation which can be used not only as enclosure components, but also as structural components for multi-story residential buildings. A novel sandwich wall system has been presented in this work with an innovative design concept. Compared with traditional steel wire sandwich panel, this sandwich panel wall system has unique features such as prefabricated steel system, core column with spiral stirrup, foamed concrete as insulation layer. This wall system also meets the national policy requirements in energy-saving and has potential application and development prospects. In this paper, Finite element method is used to simulate and analyze the seismic performance of this new sandwich wall panel. The results show that the panel with 3D steel wire has greater stiffness and better earthquake resistance than panel with planar steel wire mesh.


2014 ◽  
Vol 692 ◽  
pp. 486-489
Author(s):  
Kyung Ho Lee ◽  
Keun Hyeok Yang

The present study tested six concrete mixes to develop a high-performance foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved aerated concrete (AAC) blocks. Dry density, compressive strength and thermal conductivity of foamed concrete were measured according to the variation of unit binder content. Test result showed that dry denstiy, compressive strength and thermal conductivity of foamed concrete incresed with the increase in the unit binder content. The compressive strength of tested foamed concrete was commonly higher than that of conventional foamed concrete with the same dry density.


2020 ◽  
Vol 322 ◽  
pp. 01040
Author(s):  
Beata Łaźniewska-Piekarczyk

Theoretically, high-performance concrete with w/c ratio about 0.30 and w/b about 0.28 should have low porosity, low water permeability and high strength. The purpose of this study was to examine the influence of the superplasticizers( with and without air-entraining effect) and shrinkage reducing admixture based on a high molecular weight basis alcohol amount on the air-content, compressive strength, shrink and resistance to water penetration of high-performance self-compacting concrete (HPSCC). The test results have shown that despite the low water content, concrete modified with inadequately selected SP and high amount of SRA has a high porosity and low strength and water permeability. The types of superplasticizers and amount of SRA are significant due to porosity parameters, compressive strength and water-permeability of HPSCC. The water permeability and compressive strength of HPSCC depending on the effects of amount of SRA admixtures on the volume of pores in HPSCC. Moreover, shrinkage of incidental air-entrained concrete, despite its lower endurance, after 28 days of hardening it is smaller than non-aerated concrete.


Alloy Digest ◽  
1973 ◽  
Vol 22 (9) ◽  

Abstract BERYLCO 25 is the standard high-performance beryllium copper alloy most widely used because of its high strength, hardness and excellent spring characteristics. BERYLCO 25 is the updated version of BERYLCO 25S (Alloy Digest Cu-3, November 1952). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-271. Producer or source: Kawecki Berylco Industries Inc..


Alloy Digest ◽  
1990 ◽  
Vol 39 (2) ◽  

Abstract ARMCO PH 13-8Mo is designed for high-performance applications requiring high strength coupled with excellent resistance to corrosion and stress corrosion. It has excellent toughness, good transverse properties and excellent forgeability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-224. Producer or source: Baltimore Specialty Steels Corporation. Originally published May 1969, revised February 1990.


Alloy Digest ◽  
2019 ◽  
Vol 68 (2) ◽  

Abstract Strenx 100 is a high-strength, high-performance structural steel with a minimum yield strength of 690 MPa (100 ksi). It meets the requirements of ASTM A514 Grade S. Strenx 100 is a US Customary steel similar to Strenx 700 (Alloy Digest SA-779, February 2017). This datasheet provides information on composition, physical properties, and tensile properties. Filing Code: SA-838. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
2016 ◽  
Vol 65 (2) ◽  

Abstract Outokumpu Type 630 is a martensitic age hardenable alloy of composition 17Cr-4Ni. The alloy has high strength and corrosion resistance similar to that of Type 304 stainless steel. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1238. Producer or source: Outokumpu High Performance Stainless.


1999 ◽  
Vol 5 (1) ◽  
pp. 29-40
Author(s):  
R. Krumbach ◽  
U. Schmelter ◽  
K. Seyfarth

Abstract Variable obsen>ations concerning frost resistance of high performance concrete have been made. The question arises which are the decisive factors influencing durability under the action of frost and de-icing salt. The proposed experiments are to be carried out in cooperation with F.A.- Finger - Institute of Bauhaus University Weimar. The aim of this study is to determine possible change of durability of high strength concrete, and to investigate the origin thereof. Measures to reduce the risk of reduced durability have to be found.


Sign in / Sign up

Export Citation Format

Share Document