Design of High-Strength Concrete for Ready-Mixed Concrete Production

2021 ◽  
Vol 325 ◽  
pp. 113-118
Author(s):  
Martin Ťažký ◽  
Klára Křížová

The high-strength concrete is a cement composite reaching high compressive strength, namely, pursuant to the legislation, higher than 60 MPa in the terms of cube compressive strength. The development of high-strength concretes exceeding 100 MPa is still an up-to-date issue and the production of these concretes is still limited only to a prefabrication. Contemporary construction industry and projecting activity have begun to focus on a construction of statically demanding buildings, which can include e.g. high-rise buildings. Such projecting often requires using of the state-of-the-art materials like cement composites with high mechanical parameters for construction of more subtle buildings. Within this article, the procedure of ready-mixed concretes development with the compressive strength around 100 MPa designed according to a project documentation for actual construction of high-rise building with the height up to 160 meters and 46 floors is described, together with the influence of the aggregate on the resulting composite strength.

2010 ◽  
Vol 163-167 ◽  
pp. 1321-1324
Author(s):  
Sang A. Cha ◽  
Cho Hwa Moon ◽  
Sang Woo Kim ◽  
Kil Hee Kim ◽  
Jung Yoon Lee

The number of high-rise reinforced concrete (RC) buildings is steadily increasing since 1980’s. The use of high strength concrete is indispensible for high-rise RC construction to ensure sufficient strength of the structure. The effect of high strength concrete can be significantly improved by the use of high strength and large size reinforcing bars. The yield strength of transverse reinforcement is limited in the current design codes to prevent possible sudden concrete failure due to over reinforcement. This paper presents the effects of the yield strength of transverse reinforcement and compressive strength of concrete on the structural behavior of reinforced concrete cylinders. Two parameters were considered in this investigation: compressive strength of concrete and the yield strength of transverse reinforcement (472MPa, 880MPa, and 1,430 MPa). Analytical and experimental results indicated that the structural behavior of RC cylinders confined with high strength transverse reinforcement is strongly influenced by compressive strength of concrete.


1989 ◽  
Vol 16 (5) ◽  
pp. 661-668
Author(s):  
Pierre Laplante ◽  
Pierre-Claude Aïtcin

In the late sixties, several concrete producers in the Chicago area developed very high strength concrete. The compressive strength of this new type of concrete was increased gradually, and it is now possible to buy 100 MPa ready-mixed concrete in several places in North America. Of significant technological importance, very high strength concrete is becoming popular all over North America due to its profitability. As to why and how very high strength concrete is made, the readily available answers to the first question contrast with the predominately empirical approach that has characterized research into producing very high strength concrete up to now. In fact, there are no miracle mixes that will universally guarantee the availability of 100 MPa ready-to-use concretes. Nonetheless, some guidelines have been established that should be followed in order to avoid various pitfalls. In Canada, very high strength concrete is beginning to be used in the Toronto and Montreal areas. This paper summarizes the principal results obtained on two specific projects: the construction of an experimental column in Montreal in 1984, and the construction of Nova Scotia Plaza in Toronto in 1986. Key words: high-strength concrete, water/cement ratio, superplasticizer, silica fume, slag.


2013 ◽  
Vol 9 (2) ◽  
Author(s):  
Erwin Rommel

The use of concrete as a building material has been developed both in quantity and qualityaspects. Concrete production time is long term in a foundry to make many breakthroughs to makea concrete material that fast food, such as precast concrete. The use of precast concrete in the areaof an aggressive environment than expected strength factors are also needed high durability,including resistance to porosity and permeability properties of concrete.This research was conducted with the cooperation of one of Precast Concrete Factory in EastJava, including the manufacture of 15x15x15 cm cube of concrete and steam curing system.Thisvariable on research ; use the type of cement (pozzolan cement and cement type-1), the length ofsteam (5 and 7 hours), and the quality concrete (K350 and K700). As for the testing performed oncompressive strength, permeability and porosity of concrete.This study concluded that steam curing system to provide early strength concrete that isbetter than conventional curing (non-steam), where compressive strength of the post-steam canreach 51% of high-strength concrete (K700) with the results 361 kg/cm2, whereas in normalconcrete (K350) reached 52% (compressive strength 192 kg/cm2). Pozzolan cement concrete alsohas the advantage in increasing the durability of concrete, especially in high-strength concrete,where the concrete porosity becomes smaller either by steam curing and non-steam. Permeabilityof concrete is given a steam becomes smaller than the normal concrete with conventional curing(non-steam).Key word : steam curing, pozzolan cement, strength of concrete


2015 ◽  
Vol 1768 ◽  
Author(s):  
Luis E. Rendon Diaz Miron ◽  
Maria E. Lara Magaña

ABSTRACTIn the early 1970s, experts predicted that the practical limit of ready-mixed concrete would be unlikely to exceed a compressive strength greater than 90 MPa [1]. Over the past two decades, the development of high-strength concrete has enabled builders to easily meet and surpass this estimate. The primary difference between high-strength concrete and normal-strength concrete relates to the compressive strength that refers to the maximum resistance of a concrete sample to applied pressure. Although there is no precise point of separation between high-strength concrete and normal-strength concrete, the American Concrete Institute defines high-strength concrete as concrete with a compressive strength greater than 45 MPa. Manufacture of high-strength concrete involves making optimal use of the basic ingredients that constitute normal-strength concrete. When selecting aggregates to obtain high-strength concrete, we consider strength, optimum size distribution, surface characteristics and a good bonding with the cement paste that affect compressive strength. Selecting a high-quality Portland cement and optimizing the combination of materials by varying the proportions of cement, water, aggregates, and admixtures is also necessary. Any of these properties could limit the ultimate strength of high-strength concrete. Pozzolans, such as fly ash and silica fume along with silicic acid, are the most commonly used mineral admixtures in high-strength concrete. These materials impart additional strength to the concrete by reacting with Portland cement hydration products to create additional Calcium Silicate Hydrate (CSH) gel, the part of the paste responsible for concrete strength; finally the most important admixture is polycarboxylate ether as super plasticizer. It would be difficult to produce high-strength ready-mixed concrete without using chemical admixtures. In this paper we study the use of high performance concrete (HPC) to obtain very narrow strong pre-fabricated elements for water conducting channels.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


2021 ◽  
Vol 1160 ◽  
pp. 25-43
Author(s):  
Naglaa Glal-Eldin Fahmy ◽  
Rasha El-Mashery ◽  
Rabiee Ali Sadeek ◽  
L.M. Abd El-Hafaz

High strength concrete (HSC) characterized by high compressive strength but lower ductility compared to normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. Nanomaterials have gained increased attention because of their improvement of mechanical properties of concrete. In this paper we present an experimental study of the flexural behavior of reinforced beams composed of high-strength concrete and nanomaterials. Eight simply supported rectangular beams were fabricated with identical geometries and reinforcements, and then tested under two third-point loads. The study investigated the concrete compressive strength (50 and 75 N/mm2) as a function of the type of nanomaterial (nanosilica, nanotitanium and nanosilica/nanotitanium hybrid) and the nanomaterial concentration (0%, 0.5% and 1.0%). The experimental results showed that nano particles can be very effective in improving compressive and tensile strength of HSC, nanotitanium is more effective than nanosilica in compressive strength. Also, binary usage of hybrid mixture (nanosilica + nanotitanium) had a remarkable improvement appearing in compressive and tensile strength than using the same percentage of single type of nanomaterials used separately. The reduction in flexural ductility due to the use of higher strength concrete can be compensated by adding nanomaterials. The percentage of concentration, concrete grade and the type of nanomaterials, could predominantly affect the flexural behavior of HSRC beams.


Sign in / Sign up

Export Citation Format

Share Document