Resource Characterization and Statistical Modeling of Ocean Current at the Gulf Stream

2017 ◽  
Vol 51 (1) ◽  
pp. 52-63 ◽  
Author(s):  
Takuya Suzuki ◽  
Hassan Mahfuz ◽  
Marco Canino

AbstractWe developed a statistical ocean current model based on data collected from the Gulf Stream along the Florida Straits. Due to the random nature of ocean current velocity, the model was described by a Gaussian probability density function. Like wind speed distribution, the power spectral density (PSD) of ocean current velocity is distributed over a wide range of frequencies but characterized by distinguishable peaks resulting from tidal currents. Accordingly, the total velocity was considered as a sum of the mean velocity and a random component. To account for the tidal effect, a tidal current component was added based on PSD values. In addition, the model was formulated as a function of normalized depth that could be used at any site for resource characterization. For validation, the proposed model was used to predict mean velocity and standard deviation at four different sites along the Gulf Stream. Predicted values were then compared with measured data at those four locations, and a good correlation was observed.

1986 ◽  
Vol 173 ◽  
pp. 431-471 ◽  
Author(s):  
J. S. Turner

The entrainment assumption, relating the inflow velocity to the local mean velocity of a turbulent flow, has been used successfully to describe natural phenomena over a wide range of scales. Its first application was to plumes rising in stably stratified surroundings, and it has been extended to inclined plumes (gravity currents) and related problems by adding the effect of buoyancy forces, which inhibit mixing across a density interface. More recently, the influence of viscosity differences between a turbulent flow and its surroundings has been studied. This paper surveys the background theory and the laboratory experiments that have been used to understand and quantify each of these phenomena, and discusses their applications in the atmosphere, the ocean and various geological contexts.


2008 ◽  
Vol 596 ◽  
pp. 49-72 ◽  
Author(s):  
HIROSHI HIGUCHI ◽  
HIDEO SAWADA ◽  
HIROYUKI KATO

The flow over cylinders of varying fineness ratio (length to diameter) aligned with the free stream was examined using a magnetic suspension and balance system in order to avoid model support interference. The drag coefficient variation of a right circular cylinder was obtained for a wide range of fineness ratios. Particle image velocimetry (PIV) was used to examine the flow field, particularly the behaviour of the leading-edge separation shear layer and its effect on the wake. Reynolds numbers based on the cylinder diameter ranged from 5×104 to 1.1×105, while the major portion of the experiment was conducted at ReD=1.0×105. For moderately large fineness ratio, the shear layer reattaches with subsequent growth of the boundary layer, whereas over shorter cylinders, the shear layer remains detached. Differences in the wake recirculation region and the immediate wake patterns are clarified in terms of both the mean velocity and turbulent flow fields, including longitudinal vortical structures in the cross-flow plane of the wake. The minimum drag corresponded to the fineness ratio for which the separated shear layer reattached at the trailing edge of the cylinder. The base pressure was obtained with a telemetry technique. Pressure fields and aerodynamic force fluctuations are also discussed.


Author(s):  
B. Simoens ◽  
M. H. Lefebvre ◽  
J. K. Asahina ◽  
F. Minami ◽  
R. E. Nickell

Detonation chambers (either mobile or fixed) are used worldwide for a wide range of applications. At present, a 1/7 scale model of a 1 ton detonation chamber is available for extended testing in Belgium. The chamber is a single wall cylindrical vessel with semi-elliptical ends. Each time an explosive charge is fired in the vessel, that vessel is submitted to a number of deformation cycles. A series of strain gages measure the deformation of the vessel walls. Experimental peak strains and vibration frequency can be compared to predicted values based on simple formulas. Measured values are reasonably close to the estimated values. The influence of the shape of the charge is studied. The shape has an important influence on the chamber response. For a fixed charge mass, a spherical charge causes less deformation than a cylindrical charge and is therefore advantageous from a fatigue point of view.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1307-1332
Author(s):  
Baojiang Sun ◽  
Zhi Zhang ◽  
Zhiyuan Wang ◽  
Shaowei Pan ◽  
Ze Wang ◽  
...  

Summary The cost of offshore drilling operations can be significantly reduced by discharging drilling cuttings into the seabed. However, this leads to accumulation of cuttings piles on the seabed near the drilling site. A certain thickness of cuttings piles changes the original trend of the seabed terrain undulation condition, thus bringing potential safety hazards to the underwater installation of production manifolds. Moreover, the interaction between cuttings and ocean currents near the cuttings piles causes the geometric shape of cuttings piles to evolve over time, which makes it more difficult to accurately predict their characteristics. On the basis of the force analysis of cuttings, considering the effects of cuttings properties (cutting size, density) and ocean-current velocity on the geometric characteristic evolution of the formed cuttings piles, a continuous model for describing the evolution of the returned cuttings piles is established in this study. This model can quantitatively characterize the functional relationship between characteristics of cuttings piles and relevant parameters (current velocity, cutting size, evolution time), and predict the location and geometry characteristics of the cuttings piles evolving into a stable state in ocean currents. Comparing the measured data in laboratory experiments and at an offshore drilling field, the relative error of the model amounts to less than 10%, which demonstrates its rationality. Simulation results show that there will be significant changes in the geometry of cuttings piles before and after the evolution, in which the intensity is correlated with current velocity and cuttings size, and cuttings piles might even split into several parts under certain conditions. The simulation and analysis of the transport and deposition of cuttings returned from the wellhead on the seabed is highly significant for the guide and optimal design of underwater production manifolds.


2019 ◽  
Vol 49 (8) ◽  
pp. 2115-2132 ◽  
Author(s):  
Joël J.-M. Hirschi ◽  
Eleanor Frajka-Williams ◽  
Adam T. Blaker ◽  
Bablu Sinha ◽  
Andrew Coward ◽  
...  

AbstractSatellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 106 m3 s−1) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Ellen M Druffel

Radiocarbon measurements on a 109-year-old (1868-1977) core of Montastrea annularis coral from Glover Reef, Belize, in the Gulf of Honduras, reveal uptake of fossil fuel CO2 and bomb 14C by surface ocean waters. The history of Δ14C values revealed by this Belize growth agree remarkably well with results for coral growth from the Florida Straits. It is concluded that these corals are reliable recorders of 14C concentrations of dissolved inorganic carbon (DIOC) in surface waters representative of the Gulf Stream.


2002 ◽  
Vol 1802 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Alexander Skabardonis

The operation of freeway weaving sections is characterized by intense lane-changing maneuvers and complex vehicle interactions that often create bottlenecks along freeway facilities. The CORSIM microscopic simulation model was applied to simulate the operation of eight realworld weaving sites in California under a wide range of operating conditions. The results indicate that CORSIM with default parameter values underpredicts the speeds in the weaving section by about 19% on average. Numerous simulation runs were made with different values of the model parameters. The following parameters were found to significantly affect the CORSIM results: ( a) car-following sensitivity factor, ( b) lane-changing aggressiveness factor, and ( c) percentage of freeway through vehicles that yield to merging traffic. The calibrated CORSIM model reasonably replicated observed traffic operations at all test sites. The predicted average speeds were within ±5 mph for most test sites. Good agreement between measured and predicted values was obtained for all the combinations of design characteristics and demand patterns.


1987 ◽  
Vol 109 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Y. Nagano ◽  
M. Hishida

An improved k-ε turbulence model for predicting wall turbulence is presented. The model was developed in conjunction with an accurate calculation of near-wall and low-Reynolds-number flows to meet the requirements of the Evaluation Committee report of the 1980–1981 Stanford Conference on Complex Turbulent Flows. The proposed model was tested by application to turbulent pipe and channel flows, a flat plate boundary layer, a relaminarizing flow, and a diffuser flow. In all cases, the predicted values of turbulent quantities agreed almost completely with measurements, which many previously proposed models failed to predict correctly, over a wide range of the Reynolds number.


2011 ◽  
Vol 687 ◽  
pp. 141-170 ◽  
Author(s):  
C. Manes ◽  
D. Poggi ◽  
L. Ridolfi

AbstractThis paper presents an experimental study devoted to investigating the effects of permeability on wall turbulence. Velocity measurements were performed by means of laser Doppler anemometry in open channel flows over walls characterized by a wide range of permeability. Previous studies proposed that the von Kármán coefficient associated with mean velocity profiles over permeable walls is significantly lower than the standard values reported for flows over smooth and rough walls. Furthermore, it was observed that turbulent flows over permeable walls do not fully respect the widely accepted paradigm of outer-layer similarity. Our data suggest that both anomalies can be explained as an effect of poor inner–outer scale separation if the depth of shear penetration within the permeable wall is considered as the representative length scale of the inner layer. We observed that with increasing permeability, the near-wall structure progressively evolves towards a more organized state until it reaches the condition of a perturbed mixing layer where the shear instability of the inflectional mean velocity profile dictates the scale of the dominant eddies. In our experiments such shear instability eddies were detected only over the wall with the highest permeability. In contrast attached eddies were present over all the other wall conditions. On the basis of these findings, we argue that the near-wall structure of turbulent flows over permeable walls is regulated by a competing mechanism between attached and shear instability eddies. We also argue that the ratio between the shear penetration depth and the boundary layer thickness quantifies the ratio between such eddy scales and, therefore, can be used as a diagnostic parameter to assess which eddy structure dominates the near-wall region for different wall permeability and flow conditions.


Sign in / Sign up

Export Citation Format

Share Document