scholarly journals StormSense: A New Integrated Network of IoT Water Level Sensors in the Smart Cities of Hampton Roads, VA

2018 ◽  
Vol 52 (2) ◽  
pp. 56-67 ◽  
Author(s):  
Jon Derek Loftis ◽  
David Forrest ◽  
Sridhar Katragadda ◽  
Kyle Spencer ◽  
Tammie Organski ◽  
...  

AbstractPropagation of cost-effective water level sensors powered through the Internet of Things (IoT) has expanded the available offerings of ingestible data streams at the disposal of modern smart cities. StormSense is an IoT-enabled inundation forecasting research initiative and an active participant in the Global City Teams Challenge, seeking to enhance flood preparedness in the smart cities of Hampton Roads, VA, for flooding resulting from storm surge, rain, and tides. In this study, we present the results of the new StormSense water level sensors to help establish the “regional resilience monitoring network” noted as a key recommendation from the Intergovernmental Pilot Project. To accomplish this, the Commonwealth Center for Recurrent Flooding Resiliency's Tidewatch tidal forecast system is being used as a starting point to integrate the extant (NOAA) and new (United States Geological Survey [USGS] and StormSense) water level sensors throughout the region and demonstrate replicability of the solution across the cities of Newport News, Norfolk, and Virginia Beach within Hampton Roads, VA. StormSense's network employs a mix of ultrasonic and radar remote sensing technologies to record water levels during 2017 Hurricanes Jose and Maria. These data were used to validate the inundation predictions of a street level hydrodynamic model (5-m resolution), whereas the water levels from the sensors and the model were concomitantly validated by a temporary water level sensor deployed by the USGS in the Hague and crowd-sourced GPS maximum flooding extent observations from the sea level rise app, developed in Norfolk, VA.

2020 ◽  
Author(s):  
David Purnell ◽  
Natalya Gomez ◽  
William Minarik ◽  
Gregory Langston

<p>GNSS-Reflectometry (GNSS-R) is a promising new technique to monitor water levels due to easier and cheaper installation of instruments in remote environments compared to traditional acoustic sensors or pressure gauges. GNSS stations that have been used for reflectometry purposes thus far are designed for monitoring land motion and may cost more than 10,000 USD each. We have found that a low-cost GNSS antenna and receiver (10 USD) can be used to make equally precise water level measurements, with an RMSE of a few centimeters when compared to a collocated acoustic sensor. However, an RMSE of less than one centimeter is typical for water level sensors and this level of accuracy is desired for research purposes. Two of the dominant sources of error in GNSS-R measurements are the effects of random noise in the Signal-to-Noise Ratio (SNR) data and tropospheric delay. Modelling work suggests that these sources of error can be reduced by using multiple low-cost antennas in the same location. In light of this, we have installed an experimental setup of antennas at various locations along the Saint Lawrence River and Initial results show that multiple antennas can be used to provide more precise measurements than a single antenna. Our installations of multiple antennas are less than 5% of the cost of stations that have been used in previous GNSS-R literature. Hence this approach could be applied to install a dense network of water level sensors along rivers, lakes or coastlines at a relatively low cost. We expect that this approach could also be applied to GNSS-R soil moisture or snow depth measurements.</p>


2021 ◽  
Author(s):  
Amelie Herzog ◽  
Kerstin Stahl ◽  
Markus Weiler ◽  
Veit Blauhut

<p>Even largely perennial rivers can fall dry during drought events. A resulting partial or full drying-up of streambeds is difficult to monitor with conventional gauging stations, but important as it heavily impacts water availability, quality and aquatic ecosystems. With a predicted tendency towards more extreme droughts, event-based intermittency is likely to increase requiring a better longitudinal quantification of water level and streamflow conditions. The Dreisam River in the south-west of Germany is a stream with a highly dynamic hydrology. In the recent extreme drought years of 2015, 2018 and 2019 the main stream and tributaries partly fell dry; whereas the main gauging station still recorded flow. Furthermore, several tributaries fell dry in 2016, 2017 and 2019.To improve the understanding of the interaction between streamflow, groundwater and water usages in low flow and zero-flow situations, a flexible longitudinal water quality and quantity monitoring network was developed. Different techniques such as QR-code-reading camera systems and ultrasound devices to log water levels as well as water temperature and electrical conductivity sensors were used. The set-up was additionally equipped with conventional capacitive water level loggers. Here, we present a comparison of the different water level monitoring techniques in order to a) evaluate the advantages and limits of the novel techniques and b) investigate any added value of longitudinal, catchment wide zero level monitoring. The results show that the choice of the measurement sites' environment, including shading of QR-codes, light reflections of the water surface and streambed topography, is crucial for a successful application of the used techniques. The distributed gauges reveal a highly variable longitudinal drying pattern within the river network that appears to be event-specific and may not be explained without consideration of all natural and altered system fluxes.</p>


2018 ◽  
Vol 52 (2) ◽  
pp. 68-83 ◽  
Author(s):  
Jon Derek Loftis ◽  
Molly Mitchell ◽  
Larry Atkinson ◽  
Ben Hamlington ◽  
Thomas R. Allen ◽  
...  

AbstractBuilding flood resilience in coastal communities requires a precise understanding of the temporal and spatial scales of inundation and the ability to detect and predict changes in flooding. In Hampton Roads, the Intergovernmental Pilot Project's Scientific Advisory Committee recommended an integrated network of ocean, earth, and atmospheric data collection from both private and public sector organizations that engage in active scientific monitoring and observing. Since its establishment, the network has grown to include monitoring of water levels, land subsidence, wave measurements, current measurements, and atmospheric conditions. High-resolution land elevation and land cover data sets have also been developed. These products have been incorporated into a number of portals and integrated tools to help support resilience planning. Significant challenges to building the network included establishing consistent data standards across organizations to allow for the integration of the data into multiple, unique products and funding the expansion of the network components. Recommendations to the network development in Hampton Roads include the need to continue to support and expand the publicly available network of sensors; enhance integration between ocean, earth, and atmospheric networks; and improve shallow water bathymetry data used in spatial flooding models.


2021 ◽  
Author(s):  
Danilo Godone ◽  
Paolo Allasia ◽  
Diego Guenzi ◽  
Davide Notti ◽  
Marco Baldo

<p>In landslide monitoring, the attention is mainly focused on rapidly evolving phenomena. However, slow and very slow landslides are equally significant as they often involve settlements and infrastructures. Additionally, they are characterized by remarkable extension and depth. Due to their low displacement rate, often they are underestimated as impacting events; but in a longer timespan, their continuous and slow activity may lead to damages to buildings and roads thus worsening the living conditions of the involved area. In order to assure a peaceful coexistence between phenomena and inhabitants, a multi-source monitoring network is recommended, by integrating surface data with subsoil ones in order to better understand the whole and real kinematic. Moreover, the data acquisition rate should be high enough to detect early any increases in displacements rate. Surface monitoring approaches are extremely wide (GNSS, remote sensing, InSAR…); on the contrary subsoil measurement systems, are few and limited to in-place inclinometers. Concerning them, the Geohazard Monitoring Group (IRPI-CNR) has developed and manufactured a robotic measuring system for the acquisition of deep-seated ground deformations and, particularly, deep horizontal displacements. The instrumentation combines the advantages of the traditional measurement technique (double readings 0/180˚) with a robotized approach improving the results in terms of revisit time, repeatability and accuracy. The robotized device also called “Automated Inclinometer System” (AIS) allows the automatic check of all the length of the borehole (up to 120m tube length) with just one inclinometer probe. The traditional cable (including probe signal and power supply) is replaced with a thin polyethylene cable (φ 2mm) for sustaining and moving the probe up/down into the standard inclinometer borehole. AIS is completely automatized, but can be also controlled by a remote web interface and, with the same mean, transmits measurement results and system diagnostic messages, such as alerts, warnings, etc. The described system is, currently and extensively, employed in landslide monitoring networks in European mountain ranges obtaining interesting results. In fact, thanks to the described features it is able to rapidly define the deep and surface kinematics of the observed phenomena and, consequently, evaluate the displacements accelerations. Furthermore, due to its high-frequency measurement, it is possible to find a relationship between rainfalls/snow melting and piezometric water levels measured by nearby stations. AIS represents a trustworthy option to realize a more complete integrated network for landslide interpretation and monitoring.</p>


2017 ◽  
Vol 11 (2) ◽  
Author(s):  
Gy. Mentes

AbstractIn Hungary, the high loess bank of the River Danube in Dunaszekcső has been moving with varying rate since 2007. On the high bank a geodetic monitoring network was established in September 2007. At the same time two borehole tiltmeters and later two ground water level sensors were also installed. The high-sensitive tiltmeters made it possible to study the relationships between the small tilts of the high bank and the ground water levels and the water level of the River Danube. Results of the multiple regression analysis between tilt components and water levels showed that the temporal variation of the regression coefficients is in close connection with the stability of the high bank. The investigations also showed that the movements are in very strong connection with the variation of the ground water level and less depend on the variation of the water level of the River Danube. The characteristic tilt processes, 3–4 weeks before large movements, and the slope stability changes inferred from the relationships between tilts and water level variations can be useful for early warning of landslides.


2014 ◽  
Vol 644-650 ◽  
pp. 1854-1857
Author(s):  
Liang Song ◽  
Huan Qiang Zhang ◽  
Fei Zheng ◽  
Jiang Feng Ma

This paper considers an ideal reservoir landslide with a single slide surface and explores the mechanism of the landslides subject to water level fluctuation by using three-dimensional discrete element software 3DEC. The results show that: the deformation and failure process of reservoir landslide can be generally divided into two phases, i.e., shear-cut failure of leading edge and tension-shear failure of the trailing edge. This study serves as a good starting point for investigating the deformation and failure mechanisms and the safety of practical landslides induced by different water levels.


Author(s):  
F. Tian ◽  
J.-R. Liu ◽  
Y. Luo ◽  
L. Zhu ◽  
Y. Yang ◽  
...  

Abstract. Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i) the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii) the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.


Shore & Beach ◽  
2019 ◽  
pp. 16-22
Author(s):  
Jeffrey Coogan ◽  
Bret Webb ◽  
Stephanie Smallegan ◽  
Jack Puleo

Storm surge and waves from Hurricane Nate in 2017 resulted in large overwash and inundation regions on Dauphin Island, Alabama. The overwash event consisted of the transport of water and sediment over the beach, dune, and barrier island system. Seven transects were established to measure pre- and post-storm survey profiles. Nine wave and water level sensors were deployed in an overwash region and captured the overwash conditions including time-varying water levels and waves. All transects experienced a net loss of sediment from the subaerial region surveyed and a range of inundation and sediment overwash. The results highlight the limits of empirical estimates for evaluating the exposure of backdune regions to overwash and inundation.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2017 ◽  
Vol 14 (1) ◽  
pp. 118-128
Author(s):  
Jason Cohen ◽  
Judy Backhouse ◽  
Omar Ally

Young people are important to cities, bringing skills and energy and contributing to economic activity. New technologies have led to the idea of a smart city as a framework for city management. Smart cities are developed from the top-down through government programmes, but also from the bottom-up by residents as technologies facilitate participation in developing new forms of city services. Young people are uniquely positioned to contribute to bottom-up smart city projects. Few diagnostic tools exist to guide city authorities on how to prioritise city service provision. A starting point is to understand how the youth value city services. This study surveys young people in Braamfontein, Johannesburg, and conducts an importance-performance analysis to identify which city services are well regarded and where the city should focus efforts and resources. The results show that Smart city initiatives that would most increase the satisfaction of youths in Braamfontein  include wireless connectivity, tools to track public transport  and  information  on city events. These  results  identify  city services that are valued by young people, highlighting services that young people could participate in providing. The importance-performance analysis can assist the city to direct effort and scarce resources effectively.


Sign in / Sign up

Export Citation Format

Share Document