HOST SPECIFICITY AND BIOLOGY OF UROPHORA CARDUI (DIPTERA: TEPHRITIDAE). A BIOCONTROL AGENT FOR CANADA THISTLE (CIRSIUM ARVENSE)

1975 ◽  
Vol 107 (10) ◽  
pp. 1101-1110 ◽  
Author(s):  
D. P. Peschken ◽  
P. Harris

AbstractThe biology of Urophora cardui (L.) (Diptera: Tephritidae) and its suitability as a biocontrol agent for Canada thistle (Cirsium arvense (L.) Scop.) were investigated. The incubation period of the eggs was 4.3 days at 27 °C. Crowding did not significantly reduce the longevity of the adults, the number of eggs laid, or the egg hatch. U. cardui overwinters as a mature larva in the gall but pupation and further development ensue when the larvae are exposed to air by opening the gall. The roots of single and double-galled plants weighed 65 and 78% less and the combined weights of the stem and leaves 47 and 58% less respectively than plants without galls. U. cardui is monophagous: it oviposits into Canada thistle and if kept without this host, into the closely related weeds Cirsium vulgare (Savi) Ten. and Carduus acanthoides L. U. cardui is a promising biological control agent and should be released in Canada.Canada thistle (Cirsium arvense (L.) Scop.) is a widespread noxious weed in Canada and the northern United States. This paper reports on the biology of Urophora cardui (L.), a European tephritid, and its suitability for introduction into Canada to aid in the control of the thistle.

Plant Disease ◽  
1998 ◽  
Vol 82 (11) ◽  
pp. 1210-1216 ◽  
Author(s):  
Chuanxue Hong ◽  
Themis J. Michailides ◽  
Brent A. Holtz

The effects of wounding, inoculum density, and three isolates (New, Ta291, and 23-E-6) of Trichoderma spp. and one isolate (BI-54) of Rhodotorula sp. on postharvest brown rot of stone fruits were determined at 20°C and 95% relative humidity (RH). Brown rot was observed frequently on wounded nectarine, peach, and plum fruits inoculated with two spores of Monilinia fructicola per wound, and occasionally on unwounded nectarine and peach fruits inoculated with the same spore load. Brown rot was observed on wounded plums only. A substantial increase in lesion diameter of brown rot was also recorded on wounded nectarines and peaches inoculated with suspensions of ≤20 spores and ≤200 spores per wound, respectively, compared with unwounded fruit. At concentrations of 107 and 108 spores per ml, all Trichoderma isolates substantially reduced brown rot on peaches (63 to 98%) and plums (67 to 100%) when fruits were inoculated with M. fructicola following the application of a biological control agent. Similarly, at 108 spores per ml, the yeast BI-54 also suppressed brown rot on peaches completely and on plums by 54%. Significant brown rot reduction was also achieved with the isolate New at a concentration of 108 spores per ml, even when the biocontrol agent was applied 12 h after inoculation with M. fructicola and under continuous conditions of 95% RH. The isolates Ta291 and 23-E-6 also reduced brown rot significantly under drier (50% RH) incubation conditions. These isolates provided the best control of brown rot on plums when they were applied 12 h earlier than inoculation with M. fructicola. Satisfactory control of brown rot on plums inoculated with M. fructicola at 8 × 104 spores per ml was achieved with New at 106 spores per ml and with Ta291 at 107 spores per ml. Measures taken to avoid injuring fruit will greatly reduce brown rot of stone fruit at any spore load for plum, but only at ≤50 spores per mm2 for peach, and at ≤5 spores per mm2 for nectarine. This study identifies two isolates (Ta291 and New) of Trichoderma atroviride, one isolate (23-E-6) of T. viride, and one of Rhodotorula sp. that show potential for further development as biocontrol agents of postharvest brown rot of stone fruits.


1979 ◽  
Vol 111 (9) ◽  
pp. 1059-1068 ◽  
Author(s):  
D.P. Peschken ◽  
G.R. Johnson

AbstractThe host specificity of Lema cyanella (L.) (Coleoptera: Chrysomelidae) and its suitability as a biological control agent were investigated. The females lay an average of 1564 eggs and development from egg to adult takes 17.6 days at 25°C during the day and 20°C during the night (average about 23°C). Feeding of adults and larvae is confined to Cirsium, Carduus, and Silybum species, and according to literature records, Cirsium arvense (L.) Scop. is the main host. No economic plants are attacked. A colony of field collected beetles imported from Germany was infected with a Nosema disease. It is recommended that disease free L. cyanella should be released against the weed C. arvense in North America.


Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 623-624 ◽  
Author(s):  
Sherry K. Turner ◽  
Peter K. Fay ◽  
Eugene L. Sharp ◽  
David C. Sands

Puccinia obtegens(Link) Tul., an autoecious rust pathogen, is a potential biological control agent of Canada thistle [Cirsium arvense(L.) Scop.]. Ten ecotypes of Canada thistle were inoculated with uredospores ofP. obtegensand sporulation was observed on all ecotypes. Infection types varied among and within ecotypes, indicating that host-resistance is one factor limiting rust infection. No correlation was found between Canada thistle susceptibility to the rust and host plant ecotype classification, stomatal density, amount of leaf pubescence, or spore germinability on leaf surfaces.


Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 377-380 ◽  
Author(s):  
Brenda S. Brosten ◽  
David C. Sands

An isolate of Sclerotinia sclerotiorum (Lib.) de Bary collected from a Canada thistle [Cirsium arvense (L.) Scop. # CIRAR] plant in Montana proved pathogenic on Canada thistle in field trials. In addition to attacking the thistle crown and causing wilting and death of the shoots, S. sclerotiorum also infected the root system. The high percentage of thistle shoot kill (20 to 80%) after treatment, and subsequent reduction in plant thistle density the following year, demonstrated the potential of S. sclerotiorum as a biological control agent for Canada thistle in Montana.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.


2021 ◽  
Vol 11 (9) ◽  
pp. 4066
Author(s):  
Spiridon Mantzoukas ◽  
Ioannis Lagogiannis ◽  
Aristeidis Ntoukas ◽  
George T. Tziros ◽  
Konstantinos Poulas ◽  
...  

Gnomoniopsis castaneae is the cause of the chestnut brown rot but has been also regarded as an important mortality factor for the chestnut gall wasp Dryocosmus kuriphilus. The question to whether G. castaneae could serve as a natural biocontrol agent against insect pests is investigated in the present study. We used three serious insect pests as experimental model insects: Plodia interpuctella and Trogoderma granarium, which are important pests of stored products, and Myzus persicae, a cosmopolitan, serious pest of annual and perennial crop plants. Although chemical pesticides represent effective control means, they are also related to several environmental and health risks. In search for alternative pest management methods, scientific interest has been focused, inter alia, on the use of entomopathogenic fungi. While Isaria fumosorosea has long been recognized as an effective control agent against several pests, G.castaneae has been very little studied. The present study examined whether and to what extent G. castaneae and I. fumosorosea exhibit insecticidal activity against fourth-instar larvae of P. interpunctella and T. granarium and adults of M. persicae. Mortality was examined in interrelation with dosage and time exposure intervals. Both fungi exhibited pesticidal action. However, G. castaneae induced noteworthy mortality only at very high doses. In general, we concluded that G. castaneae failed to cause high insect pathogenicity at normal doses and may not be an efficient biocontrol agent compared with other entomopathogens. On the other hand, our study reiterates the pathogenic potential of I. fumosorosea. More studies are needed to further our insight into the potential of EF species as a component of IPM.


2015 ◽  
Vol 55 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Keivan Karimi ◽  
Mahdi Arzanlou ◽  
Asadollah Babai Ahari ◽  
Mostafa Mansour Ghazi

AbstractWe report the first case of chafer beetle [Anisoplia austriaca(Herbst 1783)] mortality caused byActinomucor elegansvar.elegansin wheat fields of the Kurdistan province, Iran. For three years, dead larvae ofAnisoplia austriacawere collected from wheat fields of the Kurdistan province. Similar isolates of a fast-growing fungus were recovered from all samples. The fungal isolates were identified asA. elegansvar.elegansbased on morphological and cultural characteristics. The identity of the species was further confirmed using sequence data of the ITS (Internal Transcribed Spacer) region of ribosomal DNA. Koch’s postulates were fulfilled by the inoculation of the larvae ofA. austriacaandGalleria mellonella(Linnaeus, 1758) (as the model insect) using the spore suspension ofA. elegansvar.elegans. The viability of sporangiospores was evaluated using a spore dilution technique on germination medium. The results on the pathogenicity (100% mortality inA. austriacalarvae) and viability tests (germination: 95.45%) demonstrated thatA. elegansvar.eleganscan be considered as a potential biocontrol agent against the chafer beetle. Field experiments are still required to evaluate the capacity ofA. elegansas a biological control agent.


2016 ◽  
Vol 69 ◽  
pp. 258-262
Author(s):  
B. Smith ◽  
S.G. Casonato ◽  
A. Noble ◽  
G. Bourd?t

Californian thistle (Cirsium arvense) is a problematic weed particularly in permanent pastures The fungus Sclerotinia sclerotiorum has potential as a bioherbicide to control this weed but its variable efficacy in historical field trials suggest that there are differences in susceptibility to S sclerotiorum within the species To test this hypothesis the responses of 32 New Zealand provenances of C arvense to a foliageapplied myceliumonbarley preparation of S sclerotiorum were compared under common conditions Significant differences between provenances were found supporting the hypothesis that there is variation within C arvense in New Zealand in its susceptibility to S sclerotiorum Further work will examine differences in the efficacy of fungal isolates against different C arvense provenances


2021 ◽  
Vol 74 (1) ◽  
pp. 70-77
Author(s):  
Sonia Lee ◽  
Simon V. Fowler ◽  
Claudia Lange ◽  
Lindsay A. Smith ◽  
Alison M. Evans

Douglas-fir seed chalcid (DFSC) Megastigmus spermotrophus, a small (3 mm long) host-specific seed-predatory wasp, was accidentally introduced into New Zealand in the 1920s. Concern over DFSC reducing Douglas-fir seed production in New Zealand led to an attempt at biocontrol in 1955 with the release, but failed establishment, of the small (2.5 mm long) parasitoid wasp, Mesopolobus spermotrophus. We investigated why DFSC causes little destruction of Douglas-fir seed in New Zealand (usually <20%) despite the apparent absence of major natural enemies. Douglas-fir seed collections from 13 New Zealand sites yielded the seed predator (DFSC) but also potential parasitoids, which were identified using morphology and partial COI DNA sequencing. DFSC destroyed only 0.15% of Douglas-fir seed. All parasitoids were identified as the pteromalid wasp, Mes. spermotrophus, the host-specific biocontrol agent released in 1955. Total parasitism was 48.5%, but levels at some sites approached 90%, with some evidence of density-dependence. The discovery of the parasitoid Mes. spermotrophus could indicate that the biocontrol agent released in 1955 did establish after all. Alternatively, Mes. spermotrophus could have arrived accidentally in more recent importations of Douglas-fir seed. The high level of parasitism of DFSC by Mes. spermotrophus is consistent with DFSC being under successful biological control in New Zealand. Suppression of DFSC populations will benefit commercial Douglas-fir seed production in New Zealand, but it also represents the likely loss of a potential biological control agent for wilding Douglas-fir.


2017 ◽  
Vol 16 (2) ◽  
pp. 115
Author(s):  
Johanna Taribuka ◽  
Christanti Sumardiyono ◽  
Siti Muslimah Widyastuti ◽  
Arif Wibowo

Exploration and identification of endophytic Trichoderma in banana. Endophytic fungi Trichoderma is an organism that can used as biocontrol agent. This study aims to isolate and identify endophytic Trichoderma in roots of healthy banana plants from three districts in Yogyakarta, which will be used as biological control agent against the pathogen Fusarium oxysporum f.sp. cubense. Isolation was conducted using TSM (Trichoderma Selective Medium). We obtained six isolates of endophytic Trichoderma spp., i.e., Swn-1, Swn-2, Ksn, Psr-1, Psr-2, and Psr-3. Molecular identification was done by using ITS1 and ITS2 primer pain and sequenced. The sequence of DNA obtained was analysed and compared with NCBI database by using BLAST-N programe. The results showed that all isolates were amplified at 560-bp. Phylogenetic analysis showed that isolates Swn-1, Swn-2 and Psr-1 are homologous to Trichoderma harzianum, isolate Ksn homologous to Trichoderma asperrellum, isolate Psr-2 homologous to Trichoderma gamsii, and isolate Psr-3 homologous to Trichoderma koningiopsis, with the homologous value of 99%.


Sign in / Sign up

Export Citation Format

Share Document