ENTOMOPOXVIRUSES OF GRASSHOPPERS AND LOCUSTS: BIOLOGY AND BIOLOGICAL CONTROL POTENTIAL

1997 ◽  
Vol 129 (S171) ◽  
pp. 115-130 ◽  
Author(s):  
D.A. Streett ◽  
S.A. Woods ◽  
M.A. Erlandson

AbstractEntomopoxviruses (EPVs) are insect poxviruses that are often found infecting grasshoppers and locusts. Nearly 15 grasshopper and locust EPVs have been reported in the literature. This review describes our current knowledge of the biology of grasshopper and locust EPVs including virus ultrastructure, host range, production in cell culture, pathology, process of infection, epizootiology, and field evaluations of the viruses to assess their potential as biological control agents. The most extensively studied has been the Melanoplus sanguinipes EPV (MsEPV). Trypsin-like protease activity has been identified in association with MsEPV occlusion bodies but its importance in the infection process is not known. Mortality from MsEPV has been found to occur in two distinct time frames over 6 weeks or longer. MsEPV is also the only grasshopper EPV that has been grown in vitro and been shown to produce virus that is both infectious and virulent to M. sanguinipes. Horizontal transmission of grasshopper EPVs is apparently by consumption of infected cadavers. Field evaluations of MsEPV at an application rate of 1 × 1010 occlusion bodies per hectare resulted in a 23% prevalence after 13 days despite a considerable amount of dispersal of grasshoppers between plots. Epizootiological studies of EPVs will continue to be an area requiring additional research. Virus production and a limited host range are the two most critical issues affecting the development of EPVs as microbial control agents.

1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


2003 ◽  
Vol 60 (4) ◽  
pp. 663-667 ◽  
Author(s):  
Carolina Natali de Oliveira ◽  
Pedro Manuel Oliveira Janeiro Neves ◽  
Lídio Sueki Kawazoe

Microbial control in integrated pest management (IPM) programs of coffee plantations is an important factor for the reduction of pest population densities. The use of selective pesticides can be associated with entomopathogens, increasing the efficiency of the control and reducing the use of required insecticides. The in vitro fungitoxic effect of insecticide formulations of Thiamethoxam, Cyfluthrin, Deltamethrin, Alpha-Cypermethrin, Triazophos, Chlorpyrifos, Fenpropathrin and Endosulfan and Beauveria bassiana (CG 425 strain) was evaluated at three concentrations (FR = average field recommendation; 0.5 ´ FR and 2 ´ FR). Effects of these products on conidia germination, vegetative growth and sporulation were compared. Only five insecticides, at the FR concentration, promoted conidia viability higher than 60%. Viability should be considered the most important factor to be evaluated since it is the first step of the infection process. The insecticide formulations of Alpha-Cypermethrin, Thiamethoxam and Cyfluthrin caused the lower inhibition level on conidia germination at the two lower concentrations, with no difference in relation to the control. With respect to vegetative growth analysis, Thiamethoxam at the two lower concentrations was not found to cause radial growth inhibition. Thiamethoxam caused the smallest inhibition level with regard to conidia production. The use of Alpha-Cypermethrin and Thiamethoxam formulations in coffee IPM programs for a B. bassiana inoculum conservation strategy are recommended, since these products were compatible with the entomopathogenic fungus Beauveria bassiana (CG 425), an important natural control agent of the coffee berry borer, Hypothenemus hampei.


Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 50 ◽  
Author(s):  
Aurélie Hinsberger ◽  
Benoît Graillot ◽  
Christine Blachère Lopez ◽  
Sylvie Juliant ◽  
Martine Cerutti ◽  
...  

Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues.


Author(s):  
Carmen Aguilar ◽  
Marta Alves da Silva ◽  
Margarida Saraiva ◽  
Mastura Neyazi ◽  
I. Anna S. Olsson ◽  
...  

AbstractInfectious diseases are a major threat worldwide. With the alarming rise of antimicrobial resistance and emergence of new potential pathogens, a better understanding of the infection process is urgently needed. Over the last century, the development of in vitro and in vivo models has led to remarkable contributions to the current knowledge in the field of infection biology. However, applying recent advances in organoid culture technology to research infectious diseases is now taking the field to a higher level of complexity. Here, we describe the current methods available for the study of infectious diseases using organoid cultures.


2011 ◽  
Vol 92 (6) ◽  
pp. 1324-1331 ◽  
Author(s):  
Sijiani Luo ◽  
Yanfang Zhang ◽  
Xushi Xu ◽  
Marcel Westenberg ◽  
Just M. Vlak ◽  
...  

ORF100 (ha100) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been reported as one of the unique genes of group II alphabaculoviruses encoding a protein located in the occlusion-derived virus (ODV) envelope and nucleocapsid. The protein consists of 510 aa with a predicted mass of 58.1 kDa and is a homologue of poly(ADP–ribose) glycohydrolase in eukaryotes. Western blot analysis detected a 60 kDa band in HearNPV-infected HzAM1 cells starting at 18 h post-infection. Transient expression of GFP-fused HA100 in HzAM1 cells resulted in cytoplasmic localization of the protein, but after superinfection with HearNPV, GFP-fused HA100 was localized in the nucleus. To study the function of HA100 further, an ha100-null virus was constructed using bacmid technology. Viral one-step growth curve analyses showed that the ha100-null virus had similar budded virus production kinetics to that of the parental virus. Electron microscopy revealed that deletion of HA100 did not alter the morphology of ODVs or occlusion bodies (OBs). However, bioassays in larvae showed that the 50 % lethal concentration (LC50) value of HA100-null OBs was significantly higher than that of parental OBs; the median lethal time (LT50) of ha100-null OBs was about 24 h later than control virus. These results indicate that HA100 is not essential for virus replication in vitro. However, it significantly affects the oral infectivity of OBs in host insects, suggesting that the association HA100 with the ODV contributes to the infectivity of OBs in vivo.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
Lachlan A. Bourke ◽  
Christina N. Zdenek ◽  
Edgar Neri-Castro ◽  
Melisa Bénard-Valle ◽  
Alejandro Alagón ◽  
...  

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species’ geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


Sign in / Sign up

Export Citation Format

Share Document