Development of Oil-In-Water Sensors for Subsea Produced Water Discharge and Re-Injection

Author(s):  
Jeff Zhang ◽  
Ming Yang ◽  
Mark Seator
Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. B77-B84 ◽  
Author(s):  
Brian A. Lipinski ◽  
James I. Sams ◽  
Bruce D. Smith ◽  
William Harbert

Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.


2010 ◽  
Author(s):  
Ana Carolina Lammardo ◽  
Andrea Gallo ◽  
Mauricio Lammardo ◽  
Andre Lima Torres Mendes ◽  
Marcelo Mota de Azevedo

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 470 ◽  
Author(s):  
M. A. Saad ◽  
Mohammed Kamil ◽  
N. H. Abdurahman ◽  
Rosli Mohd Yunus ◽  
Omar I. Awad

The processing of crude oil often requires the extraction of a large amount of water. Frequently, crude oil is mixed with water to form water-in-crude oil emulsions as the result of factors such as high shear at the production wellhead and surface-active substances that are naturally present in crude oil. These emulsions are undesirable and require demulsification to remove the dispersed water and associated inorganic salts in order to meet production and transportation specifications. Additionally, the demulsification of these crude oil emulsions mitigates corrosion and catalyst poisoning and invariably maximizes the overall profitability of crude oil production. Recently, there has been growing research interest in developing workable solutions to the difficulties associated with transporting and refining crude oil emulsions and the restrictions on produced water discharge. Therefore, this paper reviews the recent research efforts on state-of-the-art demulsification techniques. First, an overview of crude oil emulsion types, formation, and stability is presented. Then, the parameters and mechanisms of emulsification formation and different demulsification techniques are extensively examined. It is worth noting that the efficiency of each of these techniques is dependent on the operating parameters and their interplay. Moreover, a more effective demulsification process could be attained by leveraging synergistic effects by combining one or more of these techniques. Finally, this literature review then culminates with propositions for future research. Therefore, the findings of this study can help for a better understanding of the formation and mechanisms of the various demulsification methods of crude oil to work on the development of green demulsifiers by different sources.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18918-18926 ◽  
Author(s):  
Mengjin Zhai ◽  
Mian Wu ◽  
Cunying Wang ◽  
Xiaobing Li

The existence of fine-sized oil drops that are difficult to coalesce greatly decreases the separation efficiency of produced water from alkali, surfactant, and polymer flooding technology (ASP) containing oil-in-water emulsions.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4435 ◽  
Author(s):  
Dennis Severin Hansen ◽  
Stefan Jespersen ◽  
Mads Valentin Bram ◽  
Zhenyu Yang

Offshore oil and gas facilities are currently measuring the oil-in-water (OiW) concentration in the produced water manually before discharging it into the ocean, which in most cases fulfills the government regulations. However, as stricter regulations and environmental concerns are increasing over time, the importance of measuring OiW in real-time intensifies. The significant amount of uncertainties associated with manual samplings, that is currently not taken into consideration, could potentially affect the acceptance of OiW monitors and lower the reputation of all online OiW measurement techniques. This work presents the performance of four fluorescence-based monitors on an in-house testing facility. Previous studies of a fluorescence-based monitor have raised concerns about the measurement of OiW concentration being flow-dependent. The proposed results show that the measurements from the fluorescence-based monitors are not or insignificantly flow-dependent. However, other parameters, such as gas bubbles and droplet sizes, do affect the measurement. Testing the monitors’ calibration method revealed that the weighted least square is preferred to achieve high reproducibility. Due to the high sensitivity to different compositions of atomic structures, other than aromatic hydrocarbons, the fluorescence-based monitor might not be feasible for measuring OiW concentrations in dynamic separation facilities with consistent changes. Nevertheless, they are still of interest for measuring the separation efficiency of a deoiling hydrocyclone to enhance its deoiling performance, as the separation efficiency is not dependent on OiW trueness but rather the OiW concentration before and after the hydrocyclone.


Sign in / Sign up

Export Citation Format

Share Document