scholarly journals An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 470 ◽  
Author(s):  
M. A. Saad ◽  
Mohammed Kamil ◽  
N. H. Abdurahman ◽  
Rosli Mohd Yunus ◽  
Omar I. Awad

The processing of crude oil often requires the extraction of a large amount of water. Frequently, crude oil is mixed with water to form water-in-crude oil emulsions as the result of factors such as high shear at the production wellhead and surface-active substances that are naturally present in crude oil. These emulsions are undesirable and require demulsification to remove the dispersed water and associated inorganic salts in order to meet production and transportation specifications. Additionally, the demulsification of these crude oil emulsions mitigates corrosion and catalyst poisoning and invariably maximizes the overall profitability of crude oil production. Recently, there has been growing research interest in developing workable solutions to the difficulties associated with transporting and refining crude oil emulsions and the restrictions on produced water discharge. Therefore, this paper reviews the recent research efforts on state-of-the-art demulsification techniques. First, an overview of crude oil emulsion types, formation, and stability is presented. Then, the parameters and mechanisms of emulsification formation and different demulsification techniques are extensively examined. It is worth noting that the efficiency of each of these techniques is dependent on the operating parameters and their interplay. Moreover, a more effective demulsification process could be attained by leveraging synergistic effects by combining one or more of these techniques. Finally, this literature review then culminates with propositions for future research. Therefore, the findings of this study can help for a better understanding of the formation and mechanisms of the various demulsification methods of crude oil to work on the development of green demulsifiers by different sources.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
K. K. Salam ◽  
A. O. Alade ◽  
A. O. Arinkoola ◽  
A. Opawale

In crude oil production from brown fields or heavy oil, there is production of water in oil emulsions which can either be controlled or avoided. This emulsion resulted in an increase in viscosity which can seriously affect the production of oil from sand phase up to flow line. Failure to separate the oil and water mixture efficiently and effectively could result in problems such as overloading of surface separation equipments, increased cost of pumping wet crude, and corrosion problems. Light hydrocarbon diluent was added in varied proportions to three emulsion samples collected from three different oil fields in Niger delta, Nigeria, to enhance the demulsification of crude oil emulsion. The viscosity, total petroleum hydrocarbon, and quality of water were evaluated. The viscosity of the three emulsions considered reduced by 38, 31, and 18%. It is deduced that the increase in diluent blended with emulsion leads to a corresponding decrease in the value of viscosity. This in turn enhanced the rate of demulsification of the samples. The basic sediment and water (BS&W) of the top dry oil reduces the trace value the three samples evaluated, and with optimum value of diluent, TPH values show that the water droplets are safe for disposal and for other field uses.


Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


2020 ◽  
Vol 10 (4) ◽  
pp. 165-180
Author(s):  
Faris Moayed Ahmed Hamdy ◽  
Abdullatif Mohammed Raouf ◽  
Israa Abdulsatar Esmael ◽  
Laith Hamza Thuaban ◽  
Nadia Fakhry Ibraheem ◽  
...  

Water–in–oil emulsions are a big challenge in the production and processing of crude oil due to its bad influence on the fundamental and practical aspects of industrial facilities. Researches for decades gave this phenomena a great deal in the planning to construct power plants, refineries, oil companies and other industrial facilities that uses crude oil as a raw material. In order to overcome the disadvantages and hazards of water–in–oil emulsions researchers used chemical, electrical, thermal and mechanical methods individually or in combination. The chemical method has gained the main interest due to its ease of use and economic feasibility. Demulsifiers have been used extensively to solve the problem of water in oil emulsions. The choice of using the right combination of chemicals had been reached after studying many factors such as cost and safety. This research addresses many fundamental and practical aspects regarding demulsifiers and oil demulsification aiming to find the best selection of chemicals that can be used to treat crude oil before using, refining or transporting it. The crude oil in this research had been demulsified and tested by the spectroil test method while the bottle test method had not been used to mimic the demulsification process used in power plant. The work was carried out using two types of oil, crude oil (containing 7 ppm Na and K salts concentration) and heavy fuel oil HFO (containing 12 ppm Na and K salts concentration). The crude oil samples were taken from Al – Hilla 2 power plant while the HFO samples were taken from South Baghdad 2 power plant. The results showed that the water miscible chemicals and chemicals with sufficient solubility that used as a demulsifiers like the acrylic derivatives gave the best demulsification when using more wash water percentage. While the combination of water miscible chemicals and chemicals with sufficient solubility and oil soluble chemicals gave the best results in treating heavy fuel oil while using less wash water percentage.


2020 ◽  
Vol 10 (4) ◽  
pp. 69-84
Author(s):  
Dr. Mueyyed Akram Arslan ◽  
Dr. Ghassan Burhan Yaqoob

In this study oil-soluble (RP6000 and MAKS-9150) emulsion breakers have been selected for separation of water from Kirkuk / baba (50oC), Khbbaz (40oC) crude oil emulsions and their activity measured using the Bottle test method at different concentration and found the activity of RP6000 demulsified best than MAKS-9150 emulsion breakers. RP6000 separated water (100%) in (15)min., (40)ppm and in (60)min., (20)ppm of demulsified for Kirkuk/ baba Crude oil and for khbbaz Crude oil the (100%) water separation was in (15)min., (80)ppm and in (30)min., (60)ppm and PH effect, salinity, temperature and density of emulsion stability depending on literature were explained for Optimization.


2018 ◽  
Vol 2 (4) ◽  
pp. 64 ◽  
Author(s):  
Daria S. Kolotova ◽  
Yuliya A. Kuchina ◽  
Lyudmila A. Petrova ◽  
Nicolay G. Voron’ko ◽  
Svetlana R. Derkach

The effect of aqueous phase content and temperature North Sea crude oil emulsion viscoelastic behavior has been studied. Heavy crude oil from the North Sea is of high viscosity and is capable of forming stable water-in-crude oil (w/o) emulsions without introducing any synthetic surfactants. The aqueous phase volume content was varied from 1 to 40%, and the temperature was varied from 0 to 30 °C. The w/o emulsion viscosity increased sharply when the aqueous phase content exceeds 20%, being more pronounced at the lower temperatures. The viscosity flow curves for emulsions containing more than 20% aqueous phase demonstrate non-Newtonian behavior, in contrast to crude oil, which is Newtonian. The coefficients in the master curve describing the viscosity-temperature dependence were determined. Oscillatory rheological tests showed that the loss modulus substantially exceeds the storage modulus which indicates the liquid-like state of the emulsions.


2018 ◽  
Vol 69 (6) ◽  
pp. 1498-1500
Author(s):  
Lacramioara Olarasu ◽  
Maria Stoicescu ◽  
Ion Malureanu ◽  
Ion Onutu

In the oil industry, crude oil emulsions appear very frequently in almost all activities, starting with drilling and continuing with completion, production, transportation and processing. They are usually formed naturally or during oil production and their presence can have a strong impact on oil production and facilities. In this paper we addressed the problem of oil emulsions present in a reservoir with unfavorable flow properties. It is known that the presence of emulsions in a reservoir can influence both flow capacity and the quality of its crude oil, especially when they are associated with porous medium�s low values of permeability. Considering this, we have introduced a new procedure for selecting a special fluid of fracture. This fluid has two main roles: to create new flow paths from the reservoir rock to wells; to produce emulsion breaking of emulsified oil from pore of rocks. Best fracturing fluid performance was determined by laboratory tests. Selected fluid was then used to stimulate an oil well located on an oil field from Romania. In the final section of this paper,we are presenting a short analysis of the efficiency of the operation of hydraulic fracturing stimulation probe associated with the crude oil emulsion breaking process.


REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax


2018 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Firdos. M. Abdulla ◽  
N.H. Abdurahman

During oil production and processing emulsions were formed and seriously cause problem, both in terms of chemicals used and production losses. The traditional methods of breaking crude oil emulsions are disadvantageous from both economic and environmental perspectives. In this paper, the potentials of electrocoagulation technology in demulsification of crude oil emulsion were investigated. The crude oil obtained from Petronas Ponapean Melaka, Malaysia. For stability performance test, Span 80 was used as emulsifier, while for chemical demulsification performance test,Hexylamine was used. The electrocoagulation method was used for demulsification of W/O emulsion. For electrocoagulation demulsification, three factors namely; voltages 15-50 V, current density 1.04-3.94 mAcm-2, and concentration of NaCl 0.5-2.5 g/L. The electrocoagulation demulsification showed that the best water separation efficiency was achieved at voltage 50 V, current density 3.94 mAcm-2, and NaCl concentration 2.5 g/L, whereas the separation efficiency reached at 98%. Results have shown the potential of electrocoagulation method in separation of water-in-crude oil emulsions, W/O.


2019 ◽  
Vol 25 (11) ◽  
pp. 37-46
Author(s):  
Zenah Hani Maddah ◽  
Tariq Mohammed Naife

Formation of emulsions during oil production is a costly problem, and decreased water content in emulsions leads to increases productivity and reduces the potential for pipeline corrosion and equipment used. The chemical demulsification process of crude oil emulsions is one of the methods used for reducing water content. The demulsifier presence causes the film layer between water droplets and the crude oil emulsion that to become unstable, leading to the accelerated of water coalescence. This research was performed to study the performance of a chemical demulsifier Chimec2439 (commercial) a blend of non-ionic oil-soluble surfactants. The crude oils used in these experiments were Basrah and Kirkuk Iraqi crude oil. These experimental work were done using different water to oil ratio. The study investigated the factors that have a role in demulsification processes such as the concentration of demulsifier, water content, salinity, pH, and asphaltene content. The results showed in measuring the droplet size distribution, in Basrah crude oil, that the average water droplet size was between (5.5–7.5) μm in the water content 25% while was between (3.3-4) μm in the water content 7%. The average water droplet size depends on the water content, and droplet size reduced when the water content of emulsion was less than 25%. In Kirkuk crude oil, in water content of 7%, it was between (4.5-6) μm, while in 20%, it was between (4-8) μm, and in 25% it was between (5-8.8) μm. It was found that the rate of separation increases with increasing concentration of demulsifier. For Basrah crude oil at 400ppm the separation was 83%, and for Kirkuk, crude oil was 88%. The separation of water efficiency was increased with increased water content and salt content. In Basrah crude oil, the separation rate was 84% at a dose of salt of 3% (30000) ppm and at zero% of salt, the separation was70.7%. In Kirkuk crude oil, the separation rate was equal 86.2% at a dose of salt equal 3% (30000) ppm, and at zero% of salt, the separation 80%.  


Sign in / Sign up

Export Citation Format

Share Document