Hydrate Management Strategy for Subsea Development in Gulf of Mexico

2021 ◽  
Author(s):  
Samaneh Soroush ◽  
Debbie Lu ◽  
Tommy Golczynski ◽  
Christopher Jake White ◽  
Tony Spratt

Abstract Gas hydrate formation in natural gas systems and subsea infrastructure can block pipelines and instruments, restrict flow, and lead to safety and environmental hazards in production and/or transportation systems. These problems can lead to substantial economic and HSE risks. Therefore, understanding how, when and where hydrate formation occurs are important factors in developing the hydrate management strategies. This paper addresses the hydrate management strategy in one of the subsea developments in the Gulf of Mexico (GOM). The effects of salinity, water cut, and amount of methanol on hydrate formation and plugging risk were studied in this paper. The experimental results and modeling in advanced thermodynamics software showed that an increase in the concentration of methanol and salts in the autoclave cell leads to a shift of the equilibrium curves, reducing subcooling and hydrate volume fraction while increasing induction time. The results also show that for some under-inhibited systems, the volume fraction of the hydrate slurry is low enough to allow for safe transportation of fluids during various operational conditions.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 686
Author(s):  
Trung-Kien Pham ◽  
Ana Cameirao ◽  
Aline Melchuna ◽  
Jean-Michel Herri ◽  
Philippe Glénat

Today, oil and gas fields gradually become mature with a high amount of water being produced (water cut (WC)), favoring conditions for gas hydrate formation up to the blockage of pipelines. The pressure drop is an important parameter which is closely related to the multiphase flow characteristics, risk of plugging and security of flowlines. This study developed a model based on flowloop experiments to predict the relative pressure drop in pipelines once hydrate is formed in high water cutsystems in the absence and presence of AA-LDHI and/or salt. In this model, the relative pressure drop during flow is a function of hydrate volume and hydrate agglomerate structure, represented by the volume fraction factor (Kv). This parameter is adjusted for each experiment between 1.00 and 2.74. The structure of the hydrate agglomerates can be predicted from the measured relative pressure drop as well as their impact on the flow, especially in case of a homogeneous suspension of hydrates in the flow.


2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1107
Author(s):  
Seong-Pil Kang ◽  
Dongwon Lee ◽  
Jong-Won Lee

Kinetic hydrate inhibitors (KHI) and anti-agglomerants (AA) rather than thermodynamic hydrate inhibitors (THI) are often used for flow assurance in pipelines. This is because they require much lower dosages than thermodynamic inhibitors. Although the hydrate-phase equilibria are not affected, KHI and AA prevent the formed hydrate crystals from growing to a bulky state causing pipeline blockage. However, these KHIs might have huge environmental impact due to leakages from the pipelines. In this study, two biodegradable AA candidates from natural sources (that is, lecithin and lanolin) are proposed and their performances are evaluated by comparing them with and without a conventional AA (Span 80, sorbitan monooleate). At 30% and 50% water cut, the addition of AA materials was found to enhance the flow characteristics substantially in pipelines and hardly affected the maximum value of the rotational torque, respectively. Considering the cost-effective and environmental advantages of the suggested AA candidates over a conventional AA such as Span 80, the materials are thought to have potential viability for practical operation of oil and gas pipelines. However, additional investigations will be done to clarify the optimum amounts and the action mechanisms of the suggested AAs.


2020 ◽  
Vol 10 (15) ◽  
pp. 5052 ◽  
Author(s):  
Sayani Jai Krishna Sahith ◽  
Srinivasa Rao Pedapati ◽  
Bhajan Lal

In this work, a gas hydrate formation and dissociation study was performed on two multiphase pipeline systems containing gasoline, CO2, water, and crude oil, CO2, water, in the pressure range of 2.5–3.5 MPa with fixed water cut as 15% using gas hydrate rocking cell equipment. The system has 10, 15 and 20 wt.% concentrations of gasoline and crude oil, respectively. From the obtained hydrate-liquid-vapor-equilibrium (HLVE) data, the phase diagrams for the system are constructed and analyzed to represent the phase behavior in the multiphase pipelines. Similarly, induction time and rate of gas hydrate formation studies were performed for gasoline, CO2, and water, and crude oil, CO2, water system. From the evaluation of phase behavior based on the HLVE curve, the multiphase system with gasoline exhibits an inhibition in gas hydrates formation, as the HLVE curve shifts towards the lower temperature and higher-pressure region. The multiphase system containing the crude oil system shows a promotion of gas hydrates formation, as the HLVE curve shifted towards the higher temperature and lower pressure. Similarly, the kinetics of hydrate formation of gas hydrates in the gasoline system is slow. At the same time, crude oil has a rapid gas hydrate formation rate.


SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 937-951 ◽  
Author(s):  
Ahmad A. Majid ◽  
Wonhee Lee ◽  
Vishal Srivastava ◽  
Litao Chen ◽  
Pramod Warrier ◽  
...  

Summary As the oil-and-gas industries strive for better gas-hydrate-management methods, there is the need for improved understanding of hydrate formation and plugging tendencies in multiphase flow. In this work, an industrial-scale high-pressure flow loop was used to investigate gas-hydrate formation and hydrate-slurry properties at different flow conditions: fully dispersed and partially dispersed systems. It has been shown that hydrate formation in a partially dispersed system can be more problematic compared with that in a fully dispersed system. For hydrate formation in a partially dispersed system, it was observed that there was a significant increase in pressure drop with increasing hydrate-volume fraction. This is in contrast to a fully dispersed system in which there is gradual increase in the pressure drop of the system. Further, for a partially dispersed system, studies have suggested that there may be hydrate-film growth at the pipe wall. This film growth reduces the pipeline diameter, creating a hydrate bed that then leads to flowline plugging. Because there are different hydrate-formation and -plugging mechanisms for fully and partially dispersed systems, it is necessary to investigate and compare systematically the mechanism for both systems. In this work, all experiments were specifically designed to mimic the flow systems that can be found in actual oil-and-gas flowlines (full and partial dispersion) and to understand the transportability of hydrate particles in both systems. Two variables were investigated in this work: amount of water [water cut (WC)] and pump speed (fluid-mixture velocity). Three different WCs were investigated: 30, 50, and 90 vol%. Similarly, three different pump speeds were investigated: 0.9, 1.9, and 3.0 m/s. The results from these measurements were analyzed in terms of relative pressure drop (ΔPrel) and hydrate-volume fraction (ϕhyd). It was observed that, for all WCs investigated in this work, the ΔPrel decreases with increasing pump speed, at a similar hydrate-volume fraction. Analysis conducted with the partially-visual-microscope (PVM) data collected showed that, at constant WC, the hydrate-particle size at the end of the tests decreases as the mixture velocity increases. This indicates that the hydrate-agglomeration phenomenon is more severe at low mixture velocity. Calculations of the average hydrate-growth rate for all tests conducted show that the growth rate is much lower at a mixture velocity of 3.0 m/s. This is attributed to the heat generated by the pump. At a high mixing speed of 3.0 m/s, the pump generated a significant amount of heat that then increased the temperature of the fluid. Consequently, the hydrate-growth rate decreases. It should be stated that this warming effect should not occur in the field. Flow-loop plugging occurred for tests with 50-vol% WC and pump speeds lower than 1.9 m/s, and for tests with 90-vol% WC at a pump speed of 0.9 m/s. In addition, in all 90-vol%-WC tests, emulsion breaking, where the two phases (oil and water) separated, was observed after hydrate formation. From the results and observations obtained from this investigation, proposed mechanisms are given for hydrate plugging at the different flow conditions. These new findings are important to provide qualitative and quantitative understanding of the key phenomena leading to hydrate plugging in oil/gas flowlines.


Author(s):  
Shangfei Song ◽  
Bohui Shi ◽  
Weichao Yu ◽  
Wang Li ◽  
Jing Gong

Low temperature and high pressure conditions in deep water wells and sub-sea pipelines favour the formation of gas clathrate hydrates which is very undesirable during oil and gas industries operation. The management of hydrate formation and plugging risk is essential for the flow assurance in the oil and gas production. This study aims to show how the hydrate management in the deepwater gas well testing operations in the South China Sea can be optimized. As a result of the low temperature and the high pressure in the vertical 3860 meter-tubing, hydrate would form in the tubing during well testing operations. To prevent the formation or plugging of hydrate, three hydrate management strategies are investigated including thermodynamic inhibitor injection, hydrate slurry flow technology and thermodynamic inhibitor integrated with kinetic hydrate inhibitor. The first method, injecting considerable amount of thermodynamic inhibitor (Mono Ethylene Glycol, MEG) is also the most commonly used method to prevent hydrate formation. Thermodynamic hydrate inhibitor tracking is utilized to obtain the distribution of MEG along the pipeline. Optimal dosage of MEG is calculated through further analysis. The second method, hydrate slurry flow technology is applied to the gas well. Low dosage hydrate inhibitor of antiagglomerate is added into the flow system to prevent the aggregation of hydrate particles after hydrate formation. Pressure Drop Ratio (PDR) is defined to denote the hydrate blockage risk margin. The third method is a recently proposed hydrate risk management strategy which prevents the hydrate formation by addition of Poly-N-VinylCaprolactam (PVCap) as a kinetic hydrate inhibitor (KHI). The delayed effect of PVCap on the hydrate formation induction time ensures that hydrates do not form in the pipe. This method is effective in reducing the injection amount of inhibitor. The problems of the three hydrate management strategies which should be paid attention to in industrial application are analyzed. This work promotes the understanding of hydrate management strategy and provides guidance for hydrate management optimization in oil and gas industry.


2013 ◽  
Vol 97 ◽  
pp. 198-209 ◽  
Author(s):  
Sanjeev V. Joshi ◽  
Giovanny A. Grasso ◽  
Patrick G. Lafond ◽  
Ishan Rao ◽  
Eric Webb ◽  
...  

2019 ◽  
Vol 102 ◽  
pp. 01002
Author(s):  
Edward Bondarev ◽  
Igor Rozhin ◽  
Kira Argunova

The current algorithm for calculating mass flow rate in gas production and transportation systems via outlet pressure measurements is generalized to the case when the inner cross section of pipe changes with time and is also to be determined while solving the general problem. The algorithm is recommended for identification of gas hydrate formation in the above-mentioned systems.


2005 ◽  
Vol 32 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. Ruppel ◽  
G. R. Dickens ◽  
D. G. Castellini ◽  
W. Gilhooly ◽  
D. Lizarralde

Sign in / Sign up

Export Citation Format

Share Document