scholarly journals Shiga Toxin Activates Complement and Binds Factor H: Evidence for an Active Role of Complement in Hemolytic Uremic Syndrome

2009 ◽  
Vol 182 (10) ◽  
pp. 6394-6400 ◽  
Author(s):  
Dorothea Orth ◽  
Abdul Basit Khan ◽  
Asma Naim ◽  
Katharina Grif ◽  
Jens Brockmeyer ◽  
...  
Immunobiology ◽  
2016 ◽  
Vol 221 (10) ◽  
pp. 1199 ◽  
Author(s):  
Agustín Tortajada ◽  
Sheila Pinto García ◽  
Sara Gastoldi ◽  
Jesús García-Fernández ◽  
Héctor Martín Merinero ◽  
...  

2007 ◽  
Vol 44 (1-3) ◽  
pp. 266
Author(s):  
Mihály Józsi ◽  
Stefanie Strobel ◽  
Martin Oppermann ◽  
John D. Lambris ◽  
Peter F. Zipfel

2018 ◽  
Vol 33 (11) ◽  
pp. 2057-2071 ◽  
Author(s):  
Ramon Alfonso Exeni ◽  
Romina Jimena Fernandez-Brando ◽  
Adriana Patricia Santiago ◽  
Gabriela Alejandra Fiorentino ◽  
Andrea Mariana Exeni ◽  
...  

2021 ◽  
Vol 135 (3) ◽  
pp. 575-588
Author(s):  
Gonzalo Ezequiel Pineda ◽  
Bárbara Rearte ◽  
María Florencia Todero ◽  
Andrea Cecilia Bruballa ◽  
Alan Mauro Bernal ◽  
...  

Abstract Hemolytic Uremic Syndrome (HUS), a disease triggered by Shiga toxin (Stx), is characterized by hemolytic anemia, thrombocytopenia and renal failure. The inflammatory response mediated by polymorphonuclear neutrophils (PMNs) and monocytes is essential to HUS onset. Still, the role of anti-inflammatory cytokines is less clear. The deficiency of IL-10, an anti-inflammatory cytokine, leads to severe pathology in bacterial infections but also to beneficial effects in models of sterile injury. The aim of this work was to analyze the role of IL-10 during HUS. Control and IL-10 lacking mice (IL-10−/−) were intravenously injected with Stx type 2 (Stx2) and survival rate was evaluated. PMN and circulating and renal pro- and anti-inflammatory factors were analyzed by FACS and enzyme-linked immunosorbent assay (ELISA) respectively. IL-10−/− mice showed a higher survival associated with lower renal damage reflected by reduced plasma urea and creatinine levels than control mice. Circulating PMN increased at 72 h in both mouse strains accompanied by an up-regulation of CD11b in control mice. In parallel, renal PMN were significantly increased only in control mice after toxin. Plasma TNF-α, IL-6 and corticosterone levels were higher increased in IL-10−/− than control mice. Simultaneously renal TNF-α raised constantly but was accompanied by increased TGF-β levels in IL-10−/− mice. These results demonstrate that the profile of circulating and renal cytokines after Stx2 differed between strains suggesting that balance of these factors could participate in renal protection. We conclude that IL-10 absence has a protective role in an experimental model of HUS by reducing PMN recruitment into kidney and renal damage, and increasing mice survival.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2804-2804
Author(s):  
Toshihiko Nishimura ◽  
John Morser ◽  
Zhifei Shao ◽  
Lawrence L. Leung

Abstract Hemolytic uremic syndrome (HUS) is characterized by a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The most common cause of HUS is Shiga toxin (STX)-producing E. coli, and eculizumab, a monoclonal antibody against complement C5, has shown clinical efficacy in some patients. Carboxypeptidase B2 (CPB2) is a metalloprotease activated by the thrombin/thrombomodulin complex that inactivates a number of inflammatory mediators, including complement C3a, and C5a by removing their C-terminal arginine. We hypothesized that in a murine model of STX-induced HUS, Cpb2-/- mice would have exacerbated disease compared to wild type (WT) mice due to excessive C3a and/or C5a in the absence of CPB2. A mouse model of STX-induced HUS was established by giving STX and LPS toxins intraperitoneally. Cpb2-/- mice had worse survival than WT (37% survival vs. 87% at 48h, p=0.0156). At 48h, severe thrombocytopenia developed in both WT and Cpb2-/- mice (WT: 0.096x106/μL; Cpb2-/-: 0.054x106/μL) compared to controls (1.2x106/μL; p>0.0001 vs. either WT or Cpb2-/-), with Cpb2-/- mice showing worse thrombocytopenia. Renal insufficiency was worse in Cpb2-/- mice than WT mice (BUN at 48h: 85 mg/dL vs. 37 mg/dL, p=0.0074; creatinine: 1.33 mg/dL vs. 0.23 mg/dL; p=0.0112, for Cpb2-/- and WT mice respectively, compared with normal baseline BUN and creatinine of 19 mg/dL and 0.1 mg/dL). Cpb2-/- mice developed worse anemia than WT (hemoglobin 9.8 g/dL vs. 12.4 g/dL, p=0.001 in Cpb2-/- vs. WT mice respectively). At 48h, liver function was worse in Cpb2-/- mice than WT mice, while plasma LDH was increased in Cpb2-/- mice more than WT mice. Using a standardized health score, the Cpb2-/- mice were worse than WT mice at all time points. Thus this model recapitulates STX-induced HUS with the Cpb2-/- mice having worse disease than WT. If the animals were treated with STX alone, there were no deaths in either genotype at 48h and only 37.5% mortality in Cpb2-/- mice by 60h compared with no deaths in WT mice. BUN, creatinine, liver enzymes and LDH were increased in both genotypes treated with STX alone compared to untreated mice, but there was no significant difference between the genotypes. Treatment with LPS alone caused thrombocytopenia in both WT and Cpb2-/- mice and LDH, BUN and creatinine levels were higher in Cpb2-/- mice than in WT mice, but there was no death at 48h and no drop in hemoglobin. Thus while either STX alone or LPS alone caused pathological conditions in the mice, the typical triad of HUS was only present when STX and LPS were given in combination. The Cpb2-/- mice had worse disease than WT mice consistent with our hypothesis on the role of CPB2 in inactivating C3a and/or C5a in STX-induced HUS. The potential efficacy of C3a and/or C5a blockade and anti-thrombotic agents will be tested in this model. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 7 ◽  
pp. 1155-1164 ◽  
Author(s):  
Ramón A. Exeni ◽  
Gabriela C. Fernández ◽  
Marina S. Palermo

Thrombotic microangiopathy and acute renal failure are cardinal features of post-diarrheal hemolytic uremic syndrome (HUS). These conditions are related to endothelial and epithelial cell damage induced by Shiga toxin (Stx), through an interaction with its globotriaosylceramide (Gb3) receptor. Although, Stx is the main pathogenic factor and necessary for HUS development, clinical and experimental evidence suggest that the inflammatory response is able to potentiate Stx toxicity. Lipopolysaccharides (LPS) and neutrophils (PMN) represent two central components of inflammation during a Gram-negative infection. In this regard, patients with high peripheral PMN counts at presentation have a poor prognosis. In the present review, we discuss the contribution of experimental models and patient's studies in an attempt to elucidate the pathogenic mechanisms of HUS.


2002 ◽  
Vol 62 (4) ◽  
pp. 1338-1348 ◽  
Author(s):  
Graciela I. Dran ◽  
Gabriela C. Fernández ◽  
Carolina J. Rubel ◽  
Emilse Bermejo ◽  
Sonia Gomez ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1516-1518 ◽  
Author(s):  
Mihály Józsi ◽  
Stefanie Strobel ◽  
Hans-Martin Dahse ◽  
Wei-shih Liu ◽  
Peter F. Hoyer ◽  
...  

Abstract The atypical form of the kidney disease hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. In addition to mutations in complement regulators, factor H (FH)–specific autoantibodies have been reported for aHUS patients. The aim of the present study was to understand the role of these autoantibodies in aHUS. First, the binding sites of FH autoantibodies from 5 unrelated aHUS patients were mapped using recombinant FH fragments and competitor antibodies. For all 5 autoantibodies, the binding site was localized to the FH C-terminus. In a functional assay, isolated patient IgG inhibited FH binding to C3b. In addition, autoantibody-positive patients' plasma caused enhanced hemolysis of sheep erythrocytes, which was reversed by adding FH in excess. These results suggest that aHUS-associated FH autoantibodies mimic the effect of C-terminal FH mutations, as they inhibit the regulatory function of FH at cell surfaces by blocking its C-terminal recognition region.


Sign in / Sign up

Export Citation Format

Share Document