scholarly journals Cutting Edge: HDAC3 Protects Double-Positive Thymocytes from P2X7 Receptor–Induced Cell Death

2019 ◽  
Vol 202 (4) ◽  
pp. 1033-1038 ◽  
Author(s):  
Rachael L. Philips ◽  
Shaylene A. McCue ◽  
Matthew J. Rajcula ◽  
Virginia S. Shapiro
2021 ◽  
Vol 22 (23) ◽  
pp. 12936
Author(s):  
Francisco Llavero Bernal ◽  
Miriam Luque Montoro ◽  
Alazne Arrazola Sastre ◽  
Hadriano M. Lacerda ◽  
José Luis Zugaza

ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRβ and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson’s Disease.


Author(s):  
Sinem Yilmaz ◽  
Fatih Tok ◽  
Esra A. Sahar ◽  
Bedia K. Kaymakcioglu ◽  
Petek B. Kirmizibayrak

Background: The complexity of cancer biology and the development of chemotherapy resistance are two main obstacles to cancer treatment and necessitate novel anticancer molecules that target different cell death pathways. Modulation of endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR) has been proposed as potential chemotherapeutic target, as prolonged ER stress can lead to cell death via apoptosis or necrosis. Objective: The present study aims to evaluate the molecular mechanism underlying the cytotoxic activity of selected urea and carbohydrazide derivatives. Methods: Cell proliferation assays were performed on HeLa, Capan1, MCF7, HCC1937, and MRC5 cell lines by WST-1 assay. The expression levels of selected ER stress, autophagy, and apoptosis marker proteins were compared by immunoblotting to characterize the underlying mechanism of cytotoxicity. Flow cytometry was used to detect apoptosis. Results: Of the tested cytotoxic compounds, 3a, 4a, 5a, 6a, and 1b dramatically and 5b moderately increased ER stress-related CHOP protein levels. Interestingly, 5b but not 3a, 4a, 5a, 6a, or 1b increased the expression of pro-apoptotic proteins such as cleaved PARP-1 and cleaved caspase-3 and -7. Flow-cytometry analysis further confirmed that the cytotoxic activity of 5b but not the other compounds is mediated by apoptosis, which is also demonstrated by a significant increase in the percentage of late apoptotic cells (7-AAD/annexin V double-positive cells). Conclusion: Our results suggest that changing a substituent from trifluoromethyl to nitro in urea and carbohydrazide core structure alters the cell death mechanism from apoptosis to an apoptosis-independent cell death pathway. This study shows an example of how such simple modifications of a core chemical structure could cause the induction of divergent cell death pathways.


1996 ◽  
Vol 15 (21) ◽  
pp. 5876-5887 ◽  
Author(s):  
A. Lerner ◽  
L. K. Clayton ◽  
E. Mizoguchi ◽  
Y. Ghendler ◽  
W. van Ewijk ◽  
...  

2007 ◽  
Vol 178 (5) ◽  
pp. 2636-2640 ◽  
Author(s):  
Carl S. Goodyear ◽  
Maripat Corr ◽  
Fujimi Sugiyama ◽  
David L. Boyle ◽  
Gregg J. Silverman
Keyword(s):  
B Cell ◽  

2013 ◽  
Vol 73 ◽  
pp. 311-319 ◽  
Author(s):  
Ukpong B. Eyo ◽  
Sam A. Miner ◽  
Katelin E. Ahlers ◽  
Long-Jun Wu ◽  
Michael E. Dailey

2005 ◽  
Vol 174 (4) ◽  
pp. 1971-1979 ◽  
Author(s):  
Hiroki Kawamura ◽  
Fred Aswad ◽  
Masahiro Minagawa ◽  
Karen Malone ◽  
Harvey Kaslow ◽  
...  

2010 ◽  
Vol 1798 (9) ◽  
pp. 1797-1804 ◽  
Author(s):  
Patrick Constantinescu ◽  
Bin Wang ◽  
Kati Kovacevic ◽  
Iman Jalilian ◽  
Giel J.C.G.M. Bosman ◽  
...  

2004 ◽  
Vol 199 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Hitoshi Okada ◽  
Chris Bakal ◽  
Arda Shahinian ◽  
Andrew Elia ◽  
Andrew Wakeham ◽  
...  

Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Silke Schnell ◽  
Corinne Démollière ◽  
Paul van den Berk ◽  
Heinz Jacobs

Gimap4, a member of the newly identified GTPase of the immunity-associated protein family (Gimap), is strongly induced by the pre–T-cell receptor in precursor T lymphocytes, transiently shut off in double-positive thymocytes, and reappears after TCR-mediated positive selection. Here, we show that Gimap4 remains expressed constitutively in the cytosol of mature T cells. A C-terminal IQ domain binds calmodulin in the absence of calcium, and conserved PKC phosphorylation motifs are targets of concanavalin A (ConA)– or PMA/ionomycin-induced PKC activation. To address the role of Gimap4 in T-cell physiology, we completed the genomic organization of the gimap4 locus and generated a Gimap4-null mutant mouse. Studies in these mice revealed no critical role of Gimap4 in T-cell development but in the regulation of apoptosis. We have found that Gimap4 accelerates the execution of programmed cell death induced by intrinsic stimuli downstream of caspase-3 activation and phosphatidylserine exposure. Apoptosis directly correlates with the phosphorylation status of Gimap4.


2017 ◽  
Vol 199 (2) ◽  
pp. 397-402 ◽  
Author(s):  
Bridget Larkin ◽  
Vladimir Ilyukha ◽  
Maxim Sorokin ◽  
Anton Buzdin ◽  
Edouard Vannier ◽  
...  
Keyword(s):  
T Cells ◽  
Type I ◽  

Sign in / Sign up

Export Citation Format

Share Document