Node-Dependent Kinematics and Multidimensional Finite Elements for the Analysis of Single/Double Swept, Composite Helicopter Blades

Author(s):  
M. Filippi ◽  
E. Carrera ◽  
D. Giusa ◽  
E. Zappino

This paper deals with finite element analysis of helicopter blades with single and double swept geometries made by metallic and composite materials. First, classical and refined beam theories are combined at the element level via a node-dependent kinematic (NDK) concept, which was recently introduced by the authors. Such an NDK approach enables the accuracy/efficiency ratio of the solution to be tuned according to the level of fidelity required by the design phase. Second, one-dimensional NDK models are combined with the possibility to introduce solid elements in those regions of the blade with a sharp variation of the geometries. The numerical examples consider a swept-tip rectangular beam and a double-swept helicopter blade with a realistic airfoil. Natural frequencies and through-the-layer stress distributions are reported to demonstrate the flexibility and computational efficiency of the proposed methodology.

Author(s):  
J. M. Allen ◽  
L. B. Erickson

A NASTRAN finite element analysis of a free standing gas turbine blade is presented. The analysis entails calculation of the first four natural frequencies, mode shapes, and relative vibratory stresses, as well as deflections and stresses due to centrifugal loading. The stiffening effect of the centrifugal force field was accounted for by using NASTRAN’s differential stiffness option. Natural frequencies measured in a rotating test correlated well with computed results. Areas of maximum vibratory stress (fundamental mode) coincided with the three zones of crack initiation observed in a metallographic examination of a fatigue failure. Airfoil stress distributions were found to be significantly different from that predicted by generalized beam theory, especially near the airfoil-platform junction.


2020 ◽  
Vol 65 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Matteo Filippi ◽  
Enrico Zappino ◽  
Erasmo Carrera ◽  
Bruno Castanié

The paper concerns mechanical responses of helicopter blades made of composite materials. Structures with complicated geometries are modeled by using both beam and solid finite elements. The adopted one-dimensional kinematics only encompasses pure displacements; therefore, the connection with three-dimensional elements can be carried out with ease. Contributions to elastic and inertial matrices deriving from nodes shared by beams and solids are merely summed together through a standard assembling procedure. Stress, free vibration, and time response analyses have been performed on different configurations. A straight metallic rotating structure and a swept-tip blade made of an orthotropic material have been considered for verification and validation purposes. Current results have been compared with experimental data and numerical solutions available in the literature. Furthermore, a straight and a double-swept blade with a realistic airfoil have been studied. For the straight configuration, the one-dimensional results have been compared with finite element solutions obtained with commercial software. The methodology enabled complicated stress distributions and coupling phenomena to be predicted with reasonable accuracy and affordable computational efforts.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


2014 ◽  
Vol 658 ◽  
pp. 261-268
Author(s):  
Jean Louis Ntakpe ◽  
Gilbert Rainer Gillich ◽  
Florian Muntean ◽  
Zeno Iosif Praisach ◽  
Peter Lorenz

This paper presents a novel non-destructive method to locate and size damages in frame structures, performed by examining and interpreting changes in measured vibration response. The method bases on a relation, prior contrived by the authors, between the strain energy distribution in the structure for the transversal vibration modes and the modal changes (in terms of natural frequencies) due to damage. Using this relation a damage location indicator DLI was derived, which permits to locate cracks in spatial structures. In this paper an L-frame is considered for proving the applicability of this method. First the mathematical expressions for the modes shapes and their derivatives were determined and simulation result compared with that obtained by finite element analysis. Afterwards patterns characterizing damage locations were derived and compared with measurement results on the real structure; the DLI permitted accurate localization of any crack placed in the two structural elements.


2012 ◽  
Vol 531 ◽  
pp. 609-612
Author(s):  
Xue Dong Han ◽  
Li Wei ◽  
Gang Luo ◽  
Li Ping Chang

The intensity of the joint in the bottom chord would affect the quality of the whole bridge because that the force of the bottom-through bridge is transferred mainly through the bottom chord, and the members of the truss connect each other by using the thread. In this paper, the bottom chord around the tapped holes is reinforced by composite material , and the stress on the bottom chord is analyzed before and after the reinforcement using the finite element analysis method, and the stress distributions in the directions of X,Y and Z on every layer of the composite material under the bilateral reinforcing condition are extracted and compared. The results show that: Reinforcing the bottom chord around the tapped holes using the composite material can change the stress level of the bottom chord effectively, helping to improve the quality of the construction of the steel bridge and the effect of the bilateral reinforcing is better than the unilateral reinforcing and providing certain reference for the security of the steel truss bridge


Sign in / Sign up

Export Citation Format

Share Document