Silicon Carbide Junction Field Effect Transistor Compact Model for Extreme Environment Integrated Circuit Design

2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000118-000122
Author(s):  
S. Perez ◽  
A.M. Francis ◽  
J. Holmes ◽  
T. Vrotsos

Abstract Presented is a temperature and geometry scalable 800°C Silicon Carbide (SiC) Junction Field Effect Transistor (JFET) compact device model designed to simulate the small signal effects of the SiC JFET-R process developed by NASA Glenn Research Center. With the JFET-R process pushing the temperature limits of integrated circuits, a high-fidelity device model capable of predicting the performance over temperature and geometry is required to realize the thermal ruggedness this process provides. A high temperature (HT) packaging system was utilized to characterize a SiC JFET device up to 800°C with a dwell time of 9 hours during a single test. Invaluable device characterization data was obtained and utilized to extend the device model presented to simulate SiC JFET performance continuously over 800°C.

2018 ◽  
Vol 924 ◽  
pp. 949-952 ◽  
Author(s):  
David J. Spry ◽  
Philip G. Neudeck ◽  
Dorothy Lukco ◽  
Liang Yu Chen ◽  
Michael J. Krasowski ◽  
...  

This report describes more than 5000 hours of successful 500 °C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 °C. After 100 hours of 500 °C burn-in, the circuits (except for 2 failures) exhibit less than 10% change in output characteristics for the remainder of 500 °C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460 °C in comparison to what is observed for Earth-atmosphere oven testing at 500 °C.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoshi Jin ◽  
Yicheng Wang ◽  
Kailu Ma ◽  
Meile Wu ◽  
Xi Liu ◽  
...  

AbstractA bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.


2020 ◽  
Vol 209 (1) ◽  
pp. 11-18
Author(s):  
Xianjun Zhang ◽  
Na Li ◽  
Mingjia Wang ◽  
Qingliang Qin ◽  
Haohua Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document