scholarly journals Modelling of Dynamic Properties of Silicon Carbide Junction Field-Effect Transistors (JFETs)

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.

2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Ahmed Gaddour ◽  
Wael Dghais ◽  
Belgacem Hamdi ◽  
Mounir Ben Ali

PH measurements are widely used in agriculture, biomedical engineering, the food industry, environmental studies, etc. Several healthcare and biomedical research studies have reported that all aqueous samples have their pH tested at some point in their lifecycle for evaluation of the diagnosis of diseases or susceptibility, wound healing, cellular internalization, etc. The ion-sensitive field effect transistor (ISFET) is capable of pH measurements. Such use of the ISFET has become popular, as it allows sensing, preprocessing, and computational circuitry to be encapsulated on a single chip, enabling miniaturization and portability. However, the extracted data from the sensor have been affected by the variation of the temperature. This paper presents a new integrated circuit that can enhance the immunity of ion-sensitive field effect transistors (ISFET) against the temperature. To achieve this purpose, the considered ISFET macro model is analyzed and validated with experimental data. Moreover, we investigate the temperature dependency on the voltage-current (I-V). Accordingly, an improved conditioning circuit is designed in order to reduce the temperature sensitivity on the measured pH values of the ISFET sensor. The numerical validation results show that the developed solution accurately compensates the temperature variation on the measured pH values at low power consumption.


2002 ◽  
Vol 742 ◽  
Author(s):  
S.-M. Koo ◽  
S. I. Khartsev ◽  
C.-M. Zetterling ◽  
A. M. Grishin ◽  
M. Östling

ABSTRACTWe report on the integration of ferroelectric Pb(Zr,Ti)O3 (PZT) thin films on 4H-silicon carbide and their electrical properties. The structures of metal-ferroelectric-(insulator)-semiconductor MF(I)S and metal-ferroelectric-metal-insulator-semiconductor MFMIS have been fabricated and characterized. The MFMIS structures of Au/PZT/Pt/Ti/SiO2/SiC have shown fully saturated P-E hysteresis loops with remnant polarization Pr =14.2μC/cm2 and coercive field Ec = 58.9 kV/cm. The MFIS structures exhibited stable capacitance-voltage C-V loops with low conductance (<0.1 mS/cm2, tan d ∼ 0.0007 at 12 V, 400kHz) and memory window as wide as 10 V, when a 5 nm-thick Al2O3 was used as a high bandgap (Eg ∼ 9eV) barrier buffer layer between PZT (Eg ∼ 3.5eV) and SiC (Eg ∼ 3.2eV). Both structures on n- and p- SiC have shown electrical properties promising for the application to the gate stacks for the SiC field-effect transistors (FETs) and the design and process issues on different types of the metal-ferroelectric-silicon carbide field-effect transistors (FETs) have also been proposed.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Abhiroop Bhattacharjee ◽  
Thanh Chien Nguyen ◽  
Vivek Pachauri ◽  
Sven Ingebrandt ◽  
Xuan Thang Vu

Impedance sensing with silicon nanowire field-effect transistors (SiNW-FETs) shows considerable potential for label-free detection of biomolecules. With this technique, it might be possible to overcome the Debye-screening limitation, a major problem of the classical potentiometric readout. We employed an electronic circuit model in Simulation Program with Integrated Circuit Emphasis (SPICE) for SiNW-FETs to perform impedimetric measurements through SPICE simulations and quantitatively evaluate influences of various device parameters to the transfer function of the devices. Furthermore, we investigated how biomolecule binding to the surface of SiNW-FETs is influencing the impedance spectra. Based on mathematical analysis and simulation results, we proposed methods that could improve the impedimetric readout of SiNW-FET biosensors and make it more explicable.


2003 ◽  
Vol 769 ◽  
Author(s):  
Shigekazu Kuniyoshi ◽  
Kuniaki Tanaka

AbstractThe new integrated circuit concept that forms electronic equipment by the textile structure using the flexible fiber that has equipped the field effect transistor, the light emitting diode, the wiring pattern, etc. is proposed [1]. In this report, the structure of the filamentous body as a basic structure of the cloth with various electronic functions was examined. In order to simplify circuit composition, an active element such as field effect transistors, the electrode pattern for wiring, and the pads for connection are formed on the warp, and the electrode pattern for wiring and the pad for connection are formed on the woof. The circuit composition and a concrete structure of the warp and the woof are discussed.


2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000118-000122
Author(s):  
S. Perez ◽  
A.M. Francis ◽  
J. Holmes ◽  
T. Vrotsos

Abstract Presented is a temperature and geometry scalable 800°C Silicon Carbide (SiC) Junction Field Effect Transistor (JFET) compact device model designed to simulate the small signal effects of the SiC JFET-R process developed by NASA Glenn Research Center. With the JFET-R process pushing the temperature limits of integrated circuits, a high-fidelity device model capable of predicting the performance over temperature and geometry is required to realize the thermal ruggedness this process provides. A high temperature (HT) packaging system was utilized to characterize a SiC JFET device up to 800°C with a dwell time of 9 hours during a single test. Invaluable device characterization data was obtained and utilized to extend the device model presented to simulate SiC JFET performance continuously over 800°C.


2020 ◽  
Vol 16 (4) ◽  
pp. 595-607 ◽  
Author(s):  
Mu Wen Chuan ◽  
Kien Liong Wong ◽  
Afiq Hamzah ◽  
Shahrizal Rusli ◽  
Nurul Ezaila Alias ◽  
...  

Catalysed by the success of mechanical exfoliated free-standing graphene, two dimensional (2D) semiconductor materials are successively an active area of research. Silicene is a monolayer of silicon (Si) atoms with a low-buckled honeycomb lattice possessing a Dirac cone and massless fermions in the band structure. Another advantage of silicene is its compatibility with the Silicon wafer fabrication technology. To effectively apply this 2D material in the semiconductor industry, it is important to carry out theoretical studies before proceeding to the next step. In this paper, an overview of silicene and silicene nanoribbons (SiNRs) is described. After that, the theoretical studies to engineer the bandgap of silicene are reviewed. Recent theoretical advancement on the applications of silicene for various field-effect transistor (FET) structures is also discussed. Theoretical studies of silicene have shown promising results for their application as FETs and the efforts to study the performance of bandgap-engineered silicene FET should continue to improve the device performance.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3554
Author(s):  
Jaeyeop Na ◽  
Jinhee Cheon ◽  
Kwangsoo Kim

In this paper, a novel 4H-SiC split heterojunction gate double trench metal-oxide-semiconductor field-effect transistor (SHG-DTMOS) is proposed to improve switching speed and loss. The device modifies the split gate double trench MOSFET (SG-DTMOS) by changing the N+ polysilicon split gate to the P+ polysilicon split gate. It has two separate P+ shielding regions under the gate to use the P+ split polysilicon gate as a heterojunction body diode and prevent reverse leakage `current. The static and most dynamic characteristics of the SHG-DTMOS are almost like those of the SG-DTMOS. However, the reverse recovery charge is improved by 65.83% and 73.45%, and the switching loss is improved by 54.84% and 44.98%, respectively, compared with the conventional double trench MOSFET (Con-DTMOS) and SG-DTMOS owing to the heterojunction.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoshi Jin ◽  
Yicheng Wang ◽  
Kailu Ma ◽  
Meile Wu ◽  
Xi Liu ◽  
...  

AbstractA bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.


MRS Advances ◽  
2017 ◽  
Vol 2 (23) ◽  
pp. 1249-1257 ◽  
Author(s):  
F. Michael Sawatzki ◽  
Alrun A. Hauke ◽  
Duy Hai Doan ◽  
Peter Formanek ◽  
Daniel Kasemann ◽  
...  

ABSTRACTTo benefit from the many advantages of organic semiconductors like flexibility, transparency, and small thickness, electronic devices should be entirely made from organic materials. This means, additionally to organic LEDs, organic solar cells, and organic sensors, we need organic transistors to amplify, process, and control signals and electrical power. The standard lateral organic field effect transistor (OFET) does not offer the necessary performance for many of these applications. One promising candidate for solving this problem is the vertical organic field effect transistor (VOFET). In addition to the altered structure of the electrodes, the VOFET has one additional part compared to the OFET – the source-insulator. However, the influence of the used material, the size, and geometry of this insulator on the behavior of the transistor has not yet been examined. We investigate key-parameters of the VOFET with different source insulator materials and geometries. We also present transmission electron microscopy (TEM) images of the edge area. Additionally, we investigate the charge transport in such devices using drift-diffusion simulations and the concept of a vertical organic light emitting transistor (VOLET). The VOLET is a VOFET with an embedded OLED. It allows the tracking of the local current density by measuring the light intensity distribution.We show that the insulator material and thickness only have a small influence on the performance, while there is a strong impact by the insulator geometry – mainly the overlap of the insulator into the channel. By tuning this overlap, on/off-ratios of 9x105 without contact doping are possible.


Sign in / Sign up

Export Citation Format

Share Document