Combined 3D Micro Structuring of Ceramic Green Tape Using Punching, Embossing and Laser Processing

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000341-000347 ◽  
Author(s):  
Gunter Hagen ◽  
Thomas Kopp ◽  
Steffen Ziesche ◽  
Uwe Partsch ◽  
Ester Ruprecht

Multilayer ceramics technology, as LTCC, offers several advantages for the fabrication of miniaturized three-dimensional structures, e.g. for microsystem applications, where electrical, mechanical and fluidic functions can be combined in robust and compact packages. 3D features, required by those applications, are e.g. vias for electrical and thermal interconnection, cavities for chip integration and channels for fluidic functions. They can be realized, in principle, in the sintered, as well as in the green state, but structuring in the green state dominates due to the then far better machinability of the material. Ceramic green tape structuring is usually accomplished by mechanical or laser machining. Punching is the standard process for realizing vias or cavities in LTCC. By nature, only through tape features can be realized, but 3D features can be realized by stacking of several layers. Embossing can be used for the realization of quite complex 3D structures with high resolution. It can be carried out either at elevated temperature, at which the binder of the tape is softened (hot embossing) or at room temperature (cold embossing). Laser structuring is a quite flexible method, which allows both through-cutting and engraving without any specific tool. However, a certain roughness of ablated areas cannot be avoided, and depth control and uniformity of laser engraved features remain challenging. In the present paper, the different techniques will be compared regarding their appropriateness for different structuring tasks. A combined use of punching, embossing and laser processing is described, which has been made possible by a novel machine and tool concept.

2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


2016 ◽  
Vol 72 (2) ◽  
pp. 236-242 ◽  
Author(s):  
E. van Genderen ◽  
M. T. B. Clabbers ◽  
P. P. Das ◽  
A. Stewart ◽  
I. Nederlof ◽  
...  

Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enablingab initiophasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS,SHELX) and for electron crystallography (ADT3D/PETS,SIR2014).


Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishchay A. Isaac ◽  
Johannes Reiprich ◽  
Leslie Schlag ◽  
Pedro H. O. Moreira ◽  
Mostafa Baloochi ◽  
...  

AbstractThis study demonstrates the fabrication of self-aligning three-dimensional (3D) platinum bridges for ammonia gas sensing using gas-phase electrodeposition. This deposition scheme can guide charged nanoparticles to predetermined locations on a surface with sub-micrometer resolution. A shutter-free deposition is possible, preventing the use of additional steps for lift-off and improving material yield. This method uses a spark discharge-based platinum nanoparticle source in combination with sequentially biased surface electrodes and charged photoresist patterns on a glass substrate. In this way, the parallel growth of multiple sensing nodes, in this case 3D self-aligning nanoparticle-based bridges, is accomplished. An array containing 360 locally grown bridges made out of 5 nm platinum nanoparticles is fabricated. The high surface-to-volume ratio of the 3D bridge morphology enables fast response and room temperature operated sensing capabilities. The bridges are preconditioned for ~ 24 h in nitrogen gas before being used for performance testing, ensuring drift-free sensor performance. In this study, platinum bridges are demonstrated to detect ammonia (NH3) with concentrations between 1400 and 100 ppm. The sensing mechanism, response times, cross-sensitivity, selectivity, and sensor stability are discussed. The device showed a sensor response of ~ 4% at 100 ppm NH3 with a 70% response time of 8 min at room temperature.


Author(s):  
Kevin A. Rider ◽  
Bernard J. Martin

Terrain-induced vibration of a moving vehicle adversely affects the ability to quickly and accurately perform in-vehicle pointing tasks by altering the planned fingertip trajectory. The relationship between movement speed and accuracy is a result of the combined use of visual and somatosensory feedbacks which are used to discern movement deviations and make necessary compensatory movements. Participants (N=20) performed three-dimensional rapid pointing tasks under stationary and ride motion conditions to three touchpanel displays. Ride motion contributed to increased reaction and movement times and increased endpoint variability. Trajectory deviations were correlated to the principal direction of vehicle acceleration. Reaches orthogonal to the dominant vehicle acceleration exhibited larger endpoint variability, and reaches to the elevated touchpanel resulted in the largest variability across all motion conditions. Principal axes of endpoint ellipses were along the on-axis and off-axis directions of fingertip movement.


Sign in / Sign up

Export Citation Format

Share Document