A New In-Line Laser-Based Acoustic Technique for Pillar Bump Metrology

2016 ◽  
Vol 13 (2) ◽  
pp. 58-63
Author(s):  
Todd W. Murray ◽  
Andrew Bakir ◽  
David M. Stobbe ◽  
Michael J. Kotelyanskii ◽  
Robin A. Mair ◽  
...  

The drive to reduce the interconnect pitch and increase the number of connections for packaging in mobile devices has led to the development of copper pillar bumps. The key drivers for the adoption of copper pillars are improved performance, reduced form factor, and lower cost. In this article, we present a laser-based acoustic technique for the characterization of multilayer pillars. This noncontact technique has a high sensitivity for materials characterization with micron-scale spatial resolution. Absorption of laser light causes excitation of elastic waves that propagate through the pillar and are reflected by the pillar walls, exciting vibrational modes in the structure. We have demonstrated that our approach is sensitive to the thicknesses of individual layers in bilayer and trilayer copper pillar stacks. Focused ion beam scanning electron microscopy (FIB-SEM) has been used to optimize the model and to validate the accuracy of the technique.

2015 ◽  
Vol 2015 (1) ◽  
pp. 000486-000492
Author(s):  
Todd W. Murray ◽  
Andrew Bakir ◽  
David M. Stobbe ◽  
Michael J. Kotelyanskii ◽  
Robin A. Mair ◽  
...  

The drive to reduce the interconnect pitch and increase the number of connections for packaging in mobile devices has led to the development of copper pillar bumps. The key drivers for the adoption of copper pillars are improved performance, reduced form factor and lower cost. In this paper, we present a laser-based acoustic technique for the characterization of multi-layer pillars. This non-contact technique has a high sensitivity for materials characterization with micron-scale spatial resolution. Absorption of laser light causes excitation of elastic waves that propagate through the pillar and are reflected by the pillar walls, exciting vibrational modes in the structure. We have demonstrated that our approach is sensitive to the thicknesses of individual layers in bi-layer and tri-layer copper pillar stacks. Focused ion beam scanning electron microscopy (FIB SEM) has been used to optimize the model and to validate the accuracy of the technique.


2012 ◽  
Vol 20 (5) ◽  
pp. 38-44 ◽  
Author(s):  
Koji Inoue ◽  
Ajay Kumar Kambham ◽  
Dominique Mangelinck ◽  
Dan Lawrence ◽  
David J. Larson

The development of laser-assisted atom probe tomography (APT) and specimen preparation techniques using a focused ion beam equipped with high-resolution scanning electron microscopy (SEM) has significantly advanced the characterization of semiconductor devices by APT. The capability of APT to map out elements in devices at the atomic scale with high sensitivity meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


2004 ◽  
Vol 822 ◽  
Author(s):  
A. Morata ◽  
A. Tarancón ◽  
G. Dezanneau ◽  
F. Peiró ◽  
J. R. Morante

AbstractIn the present work, the screen printing technique has been used to deposit thick films of Zr0.84Y016O1.92 (8YSZ). In order to control the final porosity in view of a specific application (SOFCs or gas sensor), an experimental design based on analysis of variances (ANOVA) has been carried out. From this, we were able to determine the influence of several technological parameters on films porosity and grain size. The films obtained have been analysed with both Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) combined with SEM. We show that only the combination of experimental design and advanced observation technique such as Focused Ion Beam allowed us to extract significant information for the improvement of the deposition process.


Author(s):  
P. Olivero ◽  
J. Forneris ◽  
M. Jakšić ◽  
Ž. Pastuović ◽  
F. Picollo ◽  
...  

2009 ◽  
Vol 1228 ◽  
Author(s):  
Hao Wang ◽  
Greg C. Hartman ◽  
Joshua Williams ◽  
Jennifer L. Gray

AbstractThere are many factors that have the potential to limit significant advances in device technology. These include the ability to arrange materials at shrinking dimensions and the ability to successfully integrate new materials with better properties or new functionalities. To overcome these limitations, the development of advanced processing methods that can organize various combinations of materials at nano-scale dimensions with the necessary quality and reliability is required. We have explored using a gallium focused ion beam (FIB) as a method of integrating highly mismatched materials with silicon by creating template patterns directly on Si with nanoscale resolution. These templates are potentially useful as a means of locally controlling topography at nanoscale dimensions or as a means of locally implanting Ga at specific surface sites. We have annealed these templates in vacuum to study the effects of ion dosage on local Ga concentration and topography. We have also investigated the feasibility of creating Ga nanodots using this method that could eventually be converted to GaN through a nitridation process. Atomic force microscopy and electron microscopy characterization of the resulting structures are shown for a variety of patterning and processing conditions.


Sign in / Sign up

Export Citation Format

Share Document