scholarly journals Primary pathologic role of interleukin-6 in rheumatoid arthritis

2013 ◽  
pp. 40-46
Author(s):  
G.L. Bajocchi ◽  
N. Pipitone ◽  
P.L. Boiardi ◽  
C. Salvarani

BACKGROUND Interleukin-6 (IL-6) is a polyfunctional cytokine that regulates a very large number of cellular activities. Its implication in acute-phase reactant production by hepatocytes is of particular interest, as is its involvement in chronic inflammatory diseases, mainly rheumatoid arthritis, Crohn’s disease, and Castleman’s disease. Transgenic mice lacking IL-6 expression were completely protected against collagen-induced arthritis, and Tumor Necrosis Factor (TNF-alpha) induces synovial cells to produce IL-6 and their proliferation. However, there is still some controversies regarding the unique proinflammatory activity of IL-6. Some studies have demonstrated that IL-6 and TNF-alpha may have an opposite effect in synovial cultured cells since IL-6 could represent a negative loop for TNF-alpha induced synovitis. However, phase III studies of rheumatoid arthritis patients treated with anti IL-6 receptor (tocilizumab) indicate an acceptable safety profile relative to the clinical benefit. AIM OF THE STUDY In this review, we summarized the rationale and the main evidence regarding the therapeutic benefit of blocking IL-6 activity in rheumatoid arthritis.

2019 ◽  
Vol 25 (27) ◽  
pp. 2909-2918 ◽  
Author(s):  
Joanna Giemza-Stokłosa ◽  
Md. Asiful Islam ◽  
Przemysław J. Kotyla

Background:: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. Methods:: Different electronic databases were searched in a non-systematic way to find out the literature of interest. Results:: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. Conclusion:: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


2009 ◽  
Vol 204 (1) ◽  
pp. 178-183 ◽  
Author(s):  
Vasileios F. Panoulas ◽  
Antonios Stavropoulos-Kalinoglou ◽  
Giorgos S. Metsios ◽  
Jacqueline P. Smith ◽  
Haralampos J. Milionis ◽  
...  

2010 ◽  
Vol 21 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
C. J. Edwards ◽  
E. Williams

2005 ◽  
Vol 98 (1) ◽  
pp. 171
Author(s):  
Marcello Maggio ◽  
Shehzad Basaria ◽  
Gian Paolo Ceda ◽  
Graziano Ceresini ◽  
Giorgio Valenti ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel García ◽  
Carmen Conde

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.


1995 ◽  
Vol 310 (1) ◽  
pp. 143-148 ◽  
Author(s):  
D Zhang ◽  
S L Jiang ◽  
D Rzewnicki ◽  
D Samols ◽  
I Kushner

The combination of interleukin 6 (IL-6) and interleukin 1 (IL-1) synergistically induces the human acute-phase reactant, C-reactive protein (CRP) in Hep3B cells. While previous studies have indicated that IL-6 induces transcription of CRP, the mode of action of IL-1 has not been clearly defined. It has been suggested that the effect of IL-1 might be post-transcriptional, exerted through the 5′-untranslated region (5′-UTR). To evaluate the role of IL-1 in CRP gene expression, we studied the effects of interleukin-6 (IL-6) and interleukin-1 beta (IL-1 beta) on both the endogenous CRP gene and on transfected CRP-CAT constructs in Hep3B cells. In kinetic studies of the endogenous CRP gene, IL-1 beta alone had no effect on CRP mRNA levels, but when added to IL-6, synergistically enhanced both CRP mRNA levels and transcription, as determined by Northern-blot analyses and nuclear run-on studies. IL-6 alone and the combination of [IL-1 beta + IL-6] each induced increases in mRNA levels roughly comparable with observed increases in transcription. These findings indicate that the effect of IL-1 beta on CRP expression is exerted largely at the transcriptional level in this system. This conclusion was confirmed by studies in Hep3B cells transiently transfected with CRP-CAT constructs, each containing 157 bp of the CRP 5′-flanking region but differing in the length of the 5′-UTR from 104 bp to 3 bp. All constructs responded in the same way; IL-6, but not IL-1 beta, induced significant chloramphenicol acetyltransferase (CAT) expression which was synergistically enhanced 2- to 3-fold by IL-1 beta. These results indicate that IL-1 beta stimulates transcriptional events in the presence of IL-6 and that the upstream 157 bases of the CRP promoter contain elements capable of both IL-6 induction and the synergistic effect of IL-1 beta on transcription.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Yu ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Jueun Oh ◽  
Deok Jeong ◽  
...  

Inflammation is a complex biological response of tissues to harmful stimuli such as pathogens, cell damage, or irritants. Inflammation is considered to be a major cause of most chronic diseases, especially in more than 100 types of inflammatory diseases which include Alzheimer's disease, rheumatoid arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, hepatitis, and Parkinson's disease. Recently, an increasing number of studies have focused on inflammatory diseases. TBK1 is a serine/threonine-protein kinase which regulates antiviral defense, host-virus interaction, and immunity. It is ubiquitously expressed in mouse stomach, colon, thymus, and liver. Interestingly, high levels of active TBK1 have also been found to be associated with inflammatory diseases, indicating that TBK1 is closely related to inflammatory responses. Even though relatively few studies have addressed the functional roles of TBK1 relating to inflammation, this paper discusses some recent findings that support the critical role of TBK1 in inflammatory diseases and underlie the necessity of trials to develop useful remedies or therapeutics that target TBK1 for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document