scholarly journals Mollusk communities of the central Congo River shaped by combined effects of barriers, environmental gradients, and species dispersal

Author(s):  
Oscar Wembo Ndeo ◽  
Torsten Hauffe ◽  
Diana Delicado ◽  
Alidor Kankonda Busanga ◽  
Christian Albrecht

<p>Rapids, falls, and cascades might act as barriers for freshwater species, determining the species community up- and downstream of barriers. However, they affect community composition not only by acting as barriers but also by their influence on environmental gradients. Moreover, the directional dispersal of species along the watercourse might determine community composition. A suitable system to study these differential effects is the Congo River, the world’s second largest river by discharge. The small ‘Upper Congo Rapids’ ecoregion features several rapids known as barrier for fishes. The Wagenia Cataracts at the town of Kisangani constitute the strongest drop of the Congo River and several studies have emphasized its role as barrier for fish distribution. Alternative explanations for this pattern, however, are rarely evaluated. Though mollusks represent a vital component of the macrozoobenthos, with distribution patterns and underlying drivers often distinct from that of fishes, virtually no field surveys of the Congo River have been reported for decades. We collected and determined mollusks of 51 stations, recorded environmental conditions, and generated proxies for directional species dispersal and an indirect barrier effect. Those variables were subjected to distance-based redundancy analyses and variation partitioning in order to test whether the mollusk community compositions are better explained by an individual or combined influence of the direct and indirect effect of the cataract barrier, environmental conditions, and downstream-directed dispersal. Our survey showed an exclusive upstream/downstream distribution for just four out of the 19 species, suggesting a limited barrier effect. We revealed no direct influence of the barrier itself on community composition but of substrate type. However, we found an indirect effect of the barrier through replacing spatially structured communities upstream of the cataract with more uniform ones downstream. Downstream‑directed dispersal explained the highest fraction of variation in mollusk communities. Thus, environmental factors, the indirect cataract effect, and downstream-directed spatial proxies model mollusk community composition in concert. These results support previous studies showing a multi-factorial imprint on communities. However, a large fraction of variation community composition remained unexplained, potentially due to flood plain dynamics that (re-)shape mollusk communities constantly and a high temporal turnover, evidenced by the comparison with historical surveys. This is likely caused by the growth of Kisangani and resulting human activities. A monitoring system could allow better assessments of these impacts on communities and the conservation status of endemic species in the Wagenia Cataracts.</p>

2020 ◽  
Vol 29 (13) ◽  
pp. 3609-3634 ◽  
Author(s):  
Cristian Dambros ◽  
Gabriela Zuquim ◽  
Gabriel M. Moulatlet ◽  
Flávia R. C. Costa ◽  
Hanna Tuomisto ◽  
...  

Abstract To determine the effect of rivers, environmental conditions, and isolation by distance on the distribution of species in Amazonia. Location: Brazilian Amazonia. Time period: Current. Major taxa studied: Birds, fishes, bats, ants, termites, butterflies, ferns + lycophytes, gingers and palms. We compiled a unique dataset of biotic and abiotic information from 822 plots spread over the Brazilian Amazon. We evaluated the effects of environment, geographic distance and dispersal barriers (rivers) on assemblage composition of animal and plant taxa using multivariate techniques and distance- and raw-data-based regression approaches. Environmental variables (soil/water), geographic distance, and rivers were associated with the distribution of most taxa. The wide and relatively old Amazon River tended to determine differences in community composition for most biological groups. Despite this association, environment and geographic distance were generally more important than rivers in explaining the changes in species composition. The results from multi-taxa comparisons suggest that variation in community composition in Amazonia reflects both dispersal limitation (isolation by distance or by large rivers) and the adaptation of species to local environmental conditions. Larger and older river barriers influenced the distribution of species. However, in general this effect is weaker than the effects of environmental gradients or geographical distance at broad scales in Amazonia, but the relative importance of each of these processes varies among biological groups.


2019 ◽  
Author(s):  
E. Fernando Cagua ◽  
Audrey Lustig ◽  
Jason M. Tylianakis ◽  
Daniel B. Stouffer

AbstractWhat determines whether or not a species is a generalist or a specialist? Evidence that the environment can influence species interactions is rapidly accumulating. However, a systematic link between environment and the number of partners a species interacts with has been elusive so far. Presumably, because environmental gradients appear to have contrasting effects on species depending on the environmental variable. Here, we test for a relationship between the stresses imposed by the environment, instead of environmental gradients directly, and species specialisation using a global dataset of plant-pollinator interactions. We found that the environment can play a significant effect on specialisation, even when accounting for community composition, likely by interacting with species’ traits and evolutionary history. Species that have a large number of interactions are more likely to focus on a smaller number of, presumably higher-quality, interactions under stressful environmental conditions. Contrastingly, the specialists present in multiple locations are more likely to broaden their niche, presumably engaging in opportunistic interactions to cope with increased environmental stress. Indeed, many apparent specialists effectively behave as facultative generalists. Overall, many of the species we analysed are not inherently generalist or specialist. Instead, species’ level of specialisation should be considered on a relative scale depending on where they are found and the environmental conditions at that location.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1901
Author(s):  
Ana Gonzalez-Martinez ◽  
Carmen De-Pablos-Heredero ◽  
Martin González ◽  
Jorge Rodriguez ◽  
Cecilio Barba ◽  
...  

The Guayas, located in Ecuador, is the largest basin in the Pacific Ocean and has an inventory of 123 native freshwater species. Most of these are endemic species that are threatened or at-risk due to anthropogenic activity and the modification, fragmentation, and destruction of habitats. The aim of this study was to determine the morphometric variation in three wild populations of Brycon dentex in the Guayas basin rivers and their connections to fishing management and environmental conditions. A total of 200 mature fish were captured, and 26 morphometric parameters were measured. The fishing policies (Hypothesis 1) and environmental conditions (Hypothesis 2) were considered fixed factors and were validated by t-tests. The morphological variation among the three populations (Hypothesis 3) was validated through a discriminant analysis. Fishing policies and resource management were found to generate morphological differences associated with body development. In addition, the environmental conditions were found to influence the size and structure of Brycon dentex populations. The analyzed populations were discriminated by the generated morphometric models, which differentiated Cluster 1 (Quevedo and Mocache rivers) with high fishing pressure from Cluster 2 (Pintado river) with medium–low fishing pressure. Morphometric differentiation by discriminant analysis is a direct and economic methodology that can be applied as an indicator of diversity maintenance.


2021 ◽  
Vol 224 (Suppl 1) ◽  
pp. jeb228031
Author(s):  
Lauren B. Buckley ◽  
Sean D. Schoville ◽  
Caroline M. Williams

ABSTRACTOrganisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Scott F. George ◽  
Noah Fierer ◽  
Joseph S. Levy ◽  
Byron Adams

Ice-free soils in the McMurdo Dry Valleys select for taxa able to cope with challenging environmental conditions, including extreme chemical water activity gradients, freeze-thaw cycling, desiccation, and solar radiation regimes. The low biotic complexity of Dry Valley soils makes them well suited to investigate environmental and spatial influences on bacterial community structure. Water tracks are annually wetted habitats in the cold-arid soils of Antarctica that form briefly each summer with moisture sourced from snow melt, ground ice thaw, and atmospheric deposition via deliquescence and vapor flow into brines. Compared to neighboring arid soils, water tracks are highly saline and relatively moist habitats. They represent a considerable area (∼5–10 km2) of the Dry Valley terrestrial ecosystem, an area that is expected to increase with ongoing climate change. The goal of this study was to determine how variation in the environmental conditions of water tracks influences the composition and diversity of microbial communities. We found significant differences in microbial community composition between on- and off-water track samples, and across two distinct locations. Of the tested environmental variables, soil salinity was the best predictor of community composition, with members of the Bacteroidetes phylum being relatively more abundant at higher salinities and the Actinobacteria phylum showing the opposite pattern. There was also a significant, inverse relationship between salinity and bacterial diversity. Our results suggest water track formation significantly alters dry soil microbial communities, likely influencing subsequent ecosystem functioning. We highlight how Dry Valley water tracks could be a useful model system for understanding the potential habitability of transiently wetted environments found on the surface of Mars.


2021 ◽  
Author(s):  
Carlotta Valerio ◽  
Graciela Gómez Nicola ◽  
Rocío Aránzazu Baquero Noriega ◽  
Alberto Garrido ◽  
Lucia De Stefano

&lt;p&gt;Since 1970 the number of freshwater species has suffered a decline of 83% worldwide and anthropic activities are considered to be major drivers of ecosystems degradation. Linking the ecological response to the multiple anthropogenic stressors acting in the system is essential to effectively design policy measures to restore riverine ecosystems. However, obtaining quantitative links between stressors and ecological status is still challenging, given the non-linearity of the ecosystem response and the need to consider multiple factors at play. This study applies machine learning techniques to explore the relationships between anthropogenic pressures and the composition of fish communities in the river basins of Castilla-La Mancha, a region covering nearly 79 500 km&amp;#178; in central Spain. During the past two decades, this region has experienced an alarming decline of the conservation status of native fish species. The starting point for the analysis is a 10x10 km grid that defines for each cell the presence or absence of several fish species before and after 2001. This database was used to characterize the evolution of several metrics of fish species richness over time, accounting for the species origin (native or alien), species features (e.g. pollution tolerance) and habitat preferences. Random Forest and Gradient Boosted Regression Trees algorithms were used to relate the resulting metrics to the stressor variables describing the anthropogenic pressures acting in the rivers, such as urban wastewater discharges, land use cover, hydro-morphological degradation and the alteration of the river flow regime. The study provides new, quantitative insights into pressures-ecosystem relationships in rivers and reveals the main factors that lead to the decline of fish richness in Castilla-La Mancha, which could help inform environmental policy initiatives.&lt;/p&gt;


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


Sign in / Sign up

Export Citation Format

Share Document